Tierarztl Prax Ausg G Grosstiere Nutztiere 2021; 49(01): 21-29
DOI: 10.1055/a-1306-3331
Original Article

Xylazine or detomidine in dairy calves: a comparison of clinically relevant pharmacodynamic parameters under sedation

Xylazin versus Detomidin bei Milchkälbern – ein Vergleich klinisch relevanter pharmakodynamischer Parameter unter Sedation
Claudia Gittel
1   Department for Horses, University of Leipzig, Leipzig, Germany
2   Queen’s Veterinary School Hospital, University of Cambridge, United Kingdom
,
Walter Brehm
1   Department for Horses, University of Leipzig, Leipzig, Germany
,
Maike Wippern
1   Department for Horses, University of Leipzig, Leipzig, Germany
,
Susanne Roth
1   Department for Horses, University of Leipzig, Leipzig, Germany
3   Saxon Incubator for Clinical Translation, University of Leipzig, Leipzig, Germany
,
Aline Hillmann
3   Saxon Incubator for Clinical Translation, University of Leipzig, Leipzig, Germany
,
Alef Michaele
4   Department of Small Animal Medicine, University of Leipzig, Leipzig, Germany
› Institutsangaben

Abstract

Objective Chemical restraint in dairy calves is necessary to enable diagnostic and surgical procedures. It is unclear whether xylazine or detomidine differ with regard to desirable and unwanted effects.

Material and methods In a prospective randomized interventional study, 10 healthy Holstein-Friesian calves (age range 3–6 month) were sedated with either xylazine (0.1 mg/kg, Group X, n = 5) or detomidine (0.03 mg/kg, Group D, n = 5) intravenously, followed by butorphanol (0.1 mg/kg i. v.) in all animals. Characteristics of sedation and selected pharmacodynamic parameters were compared between groups using a non-parametric Mann-Whitney U test.

Results All calves (5/5) in Group X and (3/5) calves in Group D became laterally recumbent within 5 minutes. Two calves (40 %) in Group D remained standing and could not been positioned in lateral recumbency 15 minutes after initial administration of the sedation agents. Sedation scores, onset and duration of sedation did not differ between groups. Heart and respiratory rate decreased in both groups. Mean arterial pressure was with around 30 mmHg significantly higher in Group D (t25, t30, t35, t40 with p = 0.018, 0.036, 0.029 and 0.016, respectively). In Group X, glucose level (t60) and packed cell volume (t30) were significantly lower (p = 0.032 and 0.048, respectively).

Conclusion and clinical relevance The xylazine-butorphanol combination provided reliable recumbent chemical restraint. With detomidine-butorphanol recumbency failed in some individuals, but a sufficient clinical sedation was achieved. Based on the limited monitoring used in this study, the side effects are of minor clinical relevance in healthy individuals.

Zusammenfassung

Gegenstand und Ziel Diagnostische und chirurgische Eingriffe erfordern eine medikamentöse Ruhigstellung von Milchkälbern. Unklar ist, inwiefern sich Xylazin und Detomidin in Bezug auf ihre erwünschten und unerwünschten Wirkungen unterscheiden.

Material und Methoden Im Rahmen dieser prospektiven, randomisierten, interventionellen Studie wurden 10 gesunde Holstein-Kälber (Altersbereich 3–6 Monate) untersucht. Die intravenöse Sedation der Tiere erfolgte mit Xylazin (0,1 mg/kg, Gruppe X, n = 5) oder Detomidin (0,03 mg/kg, Gruppe D, n = 5). Anschließend erhielten alle Tiere Butorphanol (0,1 mg/kg i. v.). Neben Sedationscharakteristika wurden ausgewählte pharmakodynamische Parameter zwischen den Gruppen mit einem nicht parametrischen Mann-Whitney U Test verglichen.

Ergebnisse Alle Kälber (5/5) der Gruppe X und (3/5) Kälbern der Gruppe D legten sich innerhalb von 5 Minuten nieder. Zwei Kälber (40 %) der Gruppe D blieben stehen und konnten auch 15 Minuten nach Verabreichung der initialen Sedierung nicht in Seitenlage verbracht werden. Hinsichtlich Sedationscore, Beginn und Dauer der Sedation konnten keine Unterschiede zwischen den Gruppen festgestellt werden. Herz- und Atemfrequenz waren in beiden Gruppen während der Sedation vermindert. Der mittlere arterielle Blutdruck lag in Gruppe D um etwa 30 mmHg und damit signifikant höher (Zeitpunkt t25, t30, t35, t40; p = 0,018, 0,036, 0,029 bzw. 0,016). In Gruppe X ergaben sich signifikant niedrigere Blutglukose- (t60, p = 0,032) und Hämatokritwerte (t30, 0,048).

Schlussfolgerung und klinische Relevanz Die Kombination von Xylazin und Butorphanol bewirkte eine verlässliche medikamentöse Ruhigstellung und ein Niederlegen der Tiere. Mit Detomidin-Butorphanol hingegen ließ sich bei einigen Kälbern trotz ausreichender klinischer Sedationstiefe kein Niederlegen erzielen. Nebenwirkungen dieser Medikamente, die im Rahmen dieser Studie mit eingeschränktem Monitoring beobachtet werden konnten, haben bei gesunden Individuen geringe klinische Relevanz.

Supplementary material



Publikationsverlauf

Eingereicht: 09. März 2020

Angenommen: 15. Juli 2020

Artikel online veröffentlicht:
15. Februar 2021

© 2021. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Laming E, Melzi E, Scholes S. et al. Demonstration of early functional compromise of bone marrow derived hematopoietic progenitor cells during bovine neonatal pancytopenia through in vitro culture of bone marrow biopsies. BMC Res Notes 2012; 5: 599 DOI: 10.1186/1756–0500–5-599.
  • 2 Khan M, Ashraf M, Rashid H. et al. Comparative effects of detomidine and xylazine as sedative and analgesic agents in small ruminants. Pakistan Vet J 2004; 24 (02) 62-69
  • 3 Rizk A, Herdtweck S, Offinger J. et al. The use of xylazine hydrochloride in an analgesic protocol for claw treatment of lame dairy cows in lateral recumbency on a surgical tipping table. Vet J 2012; 192 (02) 193-198 DOI: 10.1016/j.tvjl.2011.05.022.
  • 4 Scholtysik G, Regli F, Bruckmaier R. et al. The alpha2-adrenoceptor agonists xylazine and guanfacine exert different central nervous system, but comparable peripheral effects in calves. J Vet Pharmacol Ther 1998; 21 (06) 477-484
  • 5 Thompson J, Hsu W, Kersting K. Antagonistic effect of idazoxan on xylazine-induced central nervous system depression and bradycardia in calves. Am J Vet Res 1989; 50 (05) 734-736
  • 6 Vasseur E, Rushen J, Passille A de. Short communication: calf body temperature following chemical disbudding with sedation: effects of milk allowance and supplemental heat. J Dairy Sci 2014; 97 (08) 5185-5190 DOI: 10.3168/jds.2013–7519.
  • 7 Sutil D, Mattoso C, Volpato J. et al. Hematological and splenic Doppler ultrasonographic changes in dogs sedated with acepromazine or xylazine. Vet Anaesth Analg 2017; 44 (04) 746-754 DOI: 10.1016/j.vaa.2016.11.012.
  • 8 Kullmann A, Sanz M, Fosgate G. et al. Effects of xylazine, romifidine, or detomidine on hematology, biochemistry, and splenic thickness in healthy horses. Can Vet J 2014; 55 (04) 334-340
  • 9 Virtanen R, MacDonald E. Comparison of the effects of detomidine and xylazine on some alpha2-adrenoceptor-mediated responses in the central and peripheral nervous systems. Eur J Pharmacol 1985; 115 (02/03) 277-284
  • 10 Nannarone S, Gialletti R, Veschini I. et al. The use of alpha-2 agonists in the equine practice: comparison between three molecules. Vet Res Commun 2007; 31 (Suppl. 01) 309-312 DOI: 10.1007/s11259–007–0103–7.
  • 11 Torneke K, Bergstrom U, Neil A. Interactions of xylazine and detomidine with alpha2-adrenoceptors in brain tissue from cattle, swine and rats. J Vet Pharmacol Ther 2003; 26 (03) 205-211
  • 12 Lin H, Riddell M. Preliminary study of the effects of xylazine or detomidine with or without butorphanol for standing sedation in dairy cattle. Vet Ther 2003; 4 (03) 285-291
  • 13 Ribeiro G, Dória RGS, Nunes T. et al. Effects of intravenous detomidine and xilazine on basal parameters and behavioral responses in bovine. Efeitos de detomidina e xilazina intravenosa sobre as variáveis basais e respostas comportamentais em bovinos. Arq Bras Med Vet Zootec 2012; 64 (06) 1411-1417
  • 14 Peshin P, Singh A, Singh J. et al. Sedative effect of detomidine in infant calves. Acta Vet Hung 1991; 39 (03/04) 103-107
  • 15 Guard C, Schwark W. Influence of yohimbine on xylazine-induced depression of central nervous, gastrointestinal and cardiovascular function in the calf. Cornell Vet 1984; 74 (04) 312-321
  • 16 Faulkner D, Eurell T, Tranquilli W. et al. Performance and health of weanling bulls after butorphanol and xylazine administration at castration. J Anim Sci 1992; 70 (10) 2970-2974
  • 17 Finnen A, Blond L, Francoz D. et al. Comparison of computed tomography and routine radiography of the tympanic bullae in the diagnosis of otitis media in the calf. J Vet Intern Med 2011; 25 (01) 143-147 DOI: 10.1111/j.1939–1676.2010.0659.x.
  • 18 Rioja E, Kerr C, Enouri S. et al. Sedative and cardiopulmonary effects of medetomidine hydrochloride and xylazine hydrochloride and their reversal with atipamezole hydrochloride in calves. Am J Vet Res 2008; 69 (03) 319-329 DOI: 10.2460/ajvr.69.3.319.
  • 19 Doherty T, Ballinger J, McDonell W. et al. Antagonism of xylazine induced sedation by idazoxan in calves. Can J Vet Res 1987; 51 (02) 244-248
  • 20 Thompson J, Kersting K, Hsu W. Antagonistic effect of atipamezole on xylazine-induced sedation, bradycardia, and ruminal atony in calves. Am J Vet Res 1991; 52 (08) 1265-1268
  • 21 Hokkanen A-H, Raekallio M, Salla K. et al. Sublingual administration of detomidine to calves prior to disbudding: a comparison with the intravenous route. Vet Anaesth Analg 2014; 41 (04) 372-377 DOI: 10.1111/vaa.12150.
  • 22 Moolchand M, Kachiwal A, Soomro S. et al. Comparison of sedative and analgesic effects of xylazine, detomidine, and medetomidine in sheep. Egyptian J Sheep Goat Sci 2014; 9 (02) 43-48
  • 23 Shah Z, Kalhore A, Kachiwal A. et al. Comparative studies on sedative and analgesic effects of xylazine and detomidine in goats. J Anim Plant Sci 2013; 23 (Suppl. 01) 39-42
  • 24 Ede T, Keyserlingk M von, Weary D. Efficacy of xylazine in neonatal calves via different routes of administration. Vet J 2019; 247: 57-60 DOI: 10.1016/j.tvjl.2019.02.012.
  • 25 Salonen J. Pharmacokinetics of detomidine. Acta Vet Scand Suppl 1986; 82: 59-66
  • 26 Garcia-Villar R, Toutain P, Alvinerie M. et al. The pharmacokinetics of xylazine hydrochloride: an interspecific study. J Vet Pharmacol Ther 1981; 4 (02) 87-92 DOI: 10.1111/j.1365–2885.1981.tb00715.x.
  • 27 Condino M, Suzuki K, Taguchi K. Antinociceptive, sedative and cardiopulmonary effects of subarachnoid and epidural xylazine-lidocaine in xylazine-sedated calves. Vet Anaesth Analg 2010; 37 (01) 70-78 DOI: 10.1111/j.1467–2995.2009.00494.x.
  • 28 Munoz-Rascon P, Morgaz J, Navarrete R. et al. Cardiorespiratory and neurological effects of morphine and butorphanol in Bos taurus. Vet Rec 2013; 173 (02) 42 DOI: 10.1136/vr.100827.
  • 29 Grondahl-Nielsen C, Simonsen H, Lund J. et al. Behavioural, endocrine and cardiac responses in young calves undergoing dehorning without and with use of sedation and analgesia. Vet J 1999; 158 (01) 14-20 DOI: 10.1053/tvjl.1998.0284.
  • 30 Wilson D, Kantrowitz A, Pacholewicz J. et al. Perioperative management of calves undergoing implantation of a left ventricular assist device. Vet Surg 2000; 29 (01) 106-118
  • 31 Haw A, Meyer L, Fuller A. Nalbuphine and butorphanol reverse opioid-induced respiratory depression but increase arousal in etorphine-immobilized goats (Capra hircus). Vet Anaesth Analg 2016; 43 (05) 539-548 DOI: 10.1111/vaa.12343.
  • 32 Campbell K, Klavano P, Richardson P. et al. Hemodynamic effects of xylazine in the calf. Am J Vet Res 1979; 40 (12) 1777-1780
  • 33 Aarnes T, Hubbell J, Lerche P. et al. Comparison of invasive and oscillometric blood pressure measurement techniques in anesthetized sheep, goats, and cattle. Vet Anaesth Analg 2014; 41 (02) 174-185 DOI: 10.1111/vaa.12101.
  • 34 Alshara M, Somroo H, Memon M. et al. Effetcs of xylazine on blood glucose levels in young male buffaloes. Pakistan Vet J 2000; 20 (04) 200-202