Thromb Haemost 2021; 121(09): 1138-1150
DOI: 10.1055/a-1342-3648
Review Article

miR-146a in Cardiovascular Diseases and Sepsis: An Additional Burden in the Inflammatory Balance?

Ana B. Arroyo*
1   Department of Hematology and Medical Oncology, Morales Meseguer University Hospital, Centro Regional de Hemodonación, Universidad de Murcia, IMIB, Murcia, Spain
,
Sonia Águila*
1   Department of Hematology and Medical Oncology, Morales Meseguer University Hospital, Centro Regional de Hemodonación, Universidad de Murcia, IMIB, Murcia, Spain
,
María P. Fernández-Pérez
1   Department of Hematology and Medical Oncology, Morales Meseguer University Hospital, Centro Regional de Hemodonación, Universidad de Murcia, IMIB, Murcia, Spain
,
Ascensión M. de los Reyes-García
1   Department of Hematology and Medical Oncology, Morales Meseguer University Hospital, Centro Regional de Hemodonación, Universidad de Murcia, IMIB, Murcia, Spain
,
Laura Reguilón-Gallego
1   Department of Hematology and Medical Oncology, Morales Meseguer University Hospital, Centro Regional de Hemodonación, Universidad de Murcia, IMIB, Murcia, Spain
,
Laura Zapata-Martínez
1   Department of Hematology and Medical Oncology, Morales Meseguer University Hospital, Centro Regional de Hemodonación, Universidad de Murcia, IMIB, Murcia, Spain
,
Vicente Vicente
1   Department of Hematology and Medical Oncology, Morales Meseguer University Hospital, Centro Regional de Hemodonación, Universidad de Murcia, IMIB, Murcia, Spain
,
Constantino Martínez**
1   Department of Hematology and Medical Oncology, Morales Meseguer University Hospital, Centro Regional de Hemodonación, Universidad de Murcia, IMIB, Murcia, Spain
,
Rocío González-Conejero**
1   Department of Hematology and Medical Oncology, Morales Meseguer University Hospital, Centro Regional de Hemodonación, Universidad de Murcia, IMIB, Murcia, Spain
› Author Affiliations
Funding This work was supported by research grants from Instituto de Salud Carlos III (ISCIII), Fondo Europeo de Desarrollo Regional “Investing in your future” (PI17/00051) (PFIS18/0045: A.M. de los Reyes-García) (CD18/00044: S. Águila) (CM19/00037: L. Reguilón-Gallego), and Fundación Séneca (19873/GERM/15).

Abstract

The new concept of thrombosis associated with an inflammatory process is called thromboinflammation. Indeed, both thrombosis and inflammation interplay one with the other in a feed forward manner amplifying the whole process. This pathological reaction in response to a wide variety of sterile or non-sterile stimuli eventually causes acute organ damage. In this context, neutrophils, mainly involved in eliminating pathogens as an early barrier to infection, form neutrophil extracellular traps (NETs) that are antimicrobial structures responsible of deleterious side effects such as thrombotic complications. Although NETosis mechanisms are being unraveled, there are still many regulatory elements that have to be discovered. Micro-ribonucleic acids (miRNAs) are important modulators of gene expression implicated in human pathophysiology almost two decades ago. Among the different miRNAs implicated in inflammation, miR-146a is of special interest because: (1) it regulates among others, Toll-like receptors/nuclear factor-κB axis which is of paramount importance in inflammatory processes, (2) it regulates the formation of NETs by modifying their aging phenotype, and (3) it has expression levels that may decrease among individuals up to 50%, controlled in part by the presence of several polymorphisms. In this article, we will review the main characteristics of miR-146a biology. In addition, we will detail how miR-146a is implicated in the development of two paradigmatic diseases in which thrombosis and inflammation interact, cardiovascular diseases and sepsis, and their association with the presence of miR-146a polymorphisms and the use of miR-146a as a marker of cardiovascular diseases and sepsis.

* Equally contributed.


** Shared senior authorship.




Publication History

Received: 13 September 2020

Accepted: 18 December 2020

Accepted Manuscript online:
22 December 2020

Article published online:
16 February 2021

© 2020. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Guo L, Rondina MT. The era of thromboinflammation: platelets are dynamic sensors and effector cells during infectious diseases. Front Immunol 2019; 10: 2204
  • 2 d'Alessandro E, Becker C, Bergmeier W. et al; Scientific Reviewer Committee. Thrombo-inflammation in cardiovascular disease: an expert consensus document from the Third Maastricht Consensus Conference on Thrombosis. Thromb Haemost 2020; 120 (04) 538-564
  • 3 Saba R, Sorensen DL, Booth SA. MicroRNA-146a: a dominant, negative regulator of the innate immune response. Front Immunol 2014; 5: 578
  • 4 Paterson MR, Kriegel AJ. MiR-146a/b: a family with shared seeds and different roots. Physiol Genomics 2017; 49 (04) 243-252
  • 5 Zhang Z, Zhang Y, Sun XX, Ma X, Chen ZN. microRNA-146a inhibits cancer metastasis by downregulating VEGF through dual pathways in hepatocellular carcinoma. Mol Cancer 2015; 14: 5
  • 6 Roldán V, Arroyo AB, Salloum-Asfar S. et al. Prognostic role of MIR146A polymorphisms for cardiovascular events in atrial fibrillation. Thromb Haemost 2014; 112 (04) 781-788
  • 7 Marschner D, Falk M, Javorniczky NR. et al. MicroRNA-146a regulates immune-related adverse events caused by immune checkpoint inhibitors. JCI Insight 2020; 5 (06) e132334
  • 8 Nakada TA, Takahashi W, Nakada E, Shimada T, Russell JA, Walley KR. Genetic polymorphisms in sepsis and cardiovascular disease: do similar risk genes suggest similar drug targets?. Chest 2019; 155 (06) 1260-1271
  • 9 Montecucco F, Liberale L, Bonaventura A, Vecchiè A, Dallegri F, Carbone F. The role of inflammation in cardiovascular outcome. Curr Atheroscler Rep 2017; 19 (03) 11
  • 10 Ayoub KF, Pothineni NVK, Rutland J, Ding Z, Mehta JL. Immunity, inflammation, and oxidative stress in heart failure: emerging molecular targets. Cardiovasc Drugs Ther 2017; 31 (5-6): 593-608
  • 11 Calin GA, Dumitru CD, Shimizu M. et al. Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci U S A 2002; 99 (24) 15524-15529
  • 12 Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell 2009; 136 (02) 215-233
  • 13 Hendrickson DG, Hogan DJ, McCullough HL. et al. Concordant regulation of translation and mRNA abundance for hundreds of targets of a human microRNA. PLoS Biol 2009; 7 (11) e1000238
  • 14 Bartel DP. Metazoan microRNAs. Cell 2018; 173 (01) 20-51
  • 15 Taganov KD, Boldin MP, Chang KJ, Baltimore D. NF-kappaB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses. Proc Natl Acad Sci U S A 2006; 103 (33) 12481-12486
  • 16 Curtale G, Citarella F, Carissimi C. et al. An emerging player in the adaptive immune response: microRNA-146a is a modulator of IL-2 expression and activation-induced cell death in T lymphocytes. Blood 2010; 115 (02) 265-273
  • 17 Luo X, Yang W, Ye DQ. et al. A functional variant in microRNA-146a promoter modulates its expression and confers disease risk for systemic lupus erythematosus. PLoS Genet 2011; 7 (06) e1002128
  • 18 Chang TC, Yu D, Lee YS. et al. Widespread microRNA repression by Myc contributes to tumorigenesis. Nat Genet 2008; 40 (01) 43-50
  • 19 Jazdzewski K, Murray EL, Franssila K, Jarzab B, Schoenberg DR, de la Chapelle A. Common SNP in pre-miR-146a decreases mature miR expression and predisposes to papillary thyroid carcinoma. Proc Natl Acad Sci U S A 2008; 105 (20) 7269-7274
  • 20 Löfgren SE, Frostegård J, Truedsson L. et al. Genetic association of miRNA-146a with systemic lupus erythematosus in Europeans through decreased expression of the gene. Genes Immun 2012; 13 (03) 268-274
  • 21 Stickel N, Hanke K, Marschner D. et al. MicroRNA-146a reduces MHC-II expression via targeting JAK/STAT signaling in dendritic cells after stem cell transplantation. Leukemia 2017; 31 (12) 2732-2741
  • 22 Bastami M, Choupani J, Saadatian Z. et al. MiRNA polymorphisms and risk of cardio-cerebrovascular diseases: a systematic review and meta-analysis. Int J Mol Sci 2019; 20 (02) 293
  • 23 Ding Y, Guo F, Zhu T. et al. Mechanism of long non-coding RNA MALAT1 in lipopolysaccharide-induced acute kidney injury is mediated by the miR-146a/NF-κB signaling pathway. Int J Mol Med 2018; 41 (01) 446-454
  • 24 Dai L, Zhang G, Cheng Z. et al. Knockdown of LncRNA MALAT1 contributes to the suppression of inflammatory responses by up-regulating miR-146a in LPS-induced acute lung injury. Connect Tissue Res 2018; 59 (06) 581-592
  • 25 Sun W, Ma M, Yu H, Yu H. Inhibition of lncRNA X inactivate-specific transcript ameliorates inflammatory pain by suppressing satellite glial cell activation and inflammation by acting as a sponge of miR-146a to inhibit Nav 1.7. J Cell Biochem 2018; 119 (12) 9888-9898
  • 26 Zhou Y-X, Zhao W, Mao L-W. et al. Long non-coding RNA NIFK-AS1 inhibits M2 polarization of macrophages in endometrial cancer through targeting miR-146a. Int J Biochem Cell Biol 2018; 104: 25-33
  • 27 Liu W, Wu YH, Zhang L. et al. MicroRNA-146a suppresses rheumatoid arthritis fibroblast-like synoviocytes proliferation and inflammatory responses by inhibiting the TLR4/NF-kB signaling. Oncotarget 2018; 9 (35) 23944-23959
  • 28 Yang K, He YS, Wang XQ. et al. MiR-146a inhibits oxidized low-density lipoprotein-induced lipid accumulation and inflammatory response via targeting toll-like receptor 4. FEBS Lett 2011; 585 (06) 854-860
  • 29 Ye EA, Steinle JJ. EA Y. miR-146a attenuates inflammatory pathways mediated by TLR4/NF-κB and TNFα to protect primary human retinal microvascular endothelial cells grown in high glucose. Mediators Inflamm 2016; 2016: 3958453
  • 30 Boldin MP, Taganov KD, Rao DS. et al. miR-146a is a significant brake on autoimmunity, myeloproliferation, and cancer in mice. J Exp Med 2011; 208 (06) 1189-1201
  • 31 Nahid MA, Pauley KM, Satoh M, Chan EKL. miR-146a is critical for endotoxin-induced tolerance: implication in innate immunity. J Biol Chem 2009; 284 (50) 34590-34599
  • 32 Zhao JL, Rao DS, Boldin MP, Taganov KD, O'Connell RM, Baltimore D. NF-kappaB dysregulation in microRNA-146a-deficient mice drives the development of myeloid malignancies. Proc Natl Acad Sci U S A 2011; 108 (22) 9184-9189
  • 33 Ferrer-Marín F, Arroyo AB, Bellosillo B. et al; GEMFIN Group. miR-146a rs2431697 identifies myeloproliferative neoplasm patients with higher secondary myelofibrosis progression risk. Leukemia 2020; 34 (10) 2648-2659
  • 34 Zhao JL, Rao DS, O'Connell RM, Garcia-Flores Y, Baltimore D. MicroRNA-146a acts as a guardian of the quality and longevity of hematopoietic stem cells in mice. eLife 2013; 2: e00537
  • 35 Liew PX, Kubes P. The neutrophil's role during health and disease. Physiol Rev 2019; 99 (02) 1223-1248
  • 36 Brinkmann V, Reichard U, Goosmann C. et al. Neutrophil extracellular traps kill bacteria. Science 2004; 303 (5663): 1532-1535
  • 37 Papayannopoulos V. Neutrophil extracellular traps in immunity and disease. Nat Rev Immunol 2018; 18 (02) 134-147
  • 38 Camicia G, Pozner R, de Larrañaga G. Neutrophil extracellular traps in sepsis. Shock 2014; 42 (04) 286-294
  • 39 Laridan E, Martinod K, De Meyer SF. Neutrophil extracellular traps in arterial and venous thrombosis. Semin Thromb Hemost 2019; 45 (01) 86-93
  • 40 Arroyo AB, de Los Reyes-García AM, Rivera-Caravaca JM. et al. MiR-146a regulates neutrophil extracellular trap formation that predicts adverse cardiovascular events in patients with atrial fibrillation. Arterioscler Thromb Vasc Biol 2018; 38 (04) 892-902
  • 41 Arroyo AB, Fernández-Pérez MP, Del Monte A. et al. miR-146a is a pivotal regulator of neutrophil extracellular trap formation promoting thrombosis. Haematologica 2020:haematol.2019.240226–haematol.2019.240226
  • 42 Yang S, Yuan HQ, Hao YM. et al. Macrophage polarization in atherosclerosis. Clin Chim Acta 2020; 501: 142-146
  • 43 Huang C, Liu XJ, Qun Zhou. et al. MiR-146a modulates macrophage polarization by inhibiting Notch1 pathway in RAW264.7 macrophages. Int Immunopharmacol 2016; 32: 46-54
  • 44 Curtale G, Rubino M, Locati M. MicroRNAs as molecular switches in macrophage activation. Front Immunol 2019; 10: 799
  • 45 He X, Tang R, Sun Y. et al. MicroR-146 blocks the activation of M1 macrophage by targeting signal transducer and activator of transcription 1 in hepatic schistosomiasis. EBioMedicine 2016; 13: 339-347
  • 46 Li Z, Wang S, Zhao W, Sun Z, Yan H, Zhu J. Oxidized low-density lipoprotein upregulates microRNA-146a via JNK and NF-κB signaling. Mol Med Rep 2016; 13 (02) 1709-1716
  • 47 Nahid MA, Benso LM, Shin JD, Mehmet H, Hicks A, Ramadas RA. TLR4, TLR7/8 agonist-induced miR-146a promotes macrophage tolerance to MyD88-dependent TLR agonists. J Leukoc Biol 2016; 100 (02) 339-349
  • 48 Dai Y, Jia P, Fang Y. et al. miR-146a is essential for lipopolysaccharide (LPS)-induced cross-tolerance against kidney ischemia/reperfusion injury in mice. Sci Rep 2016; 6: 27091
  • 49 Yang L, Boldin MP, Yu Y. et al. miR-146a controls the resolution of T cell responses in mice. J Exp Med 2012; 209 (09) 1655-1670
  • 50 Magilnick N, Reyes EY, Wang WL. et al. miR-146a-Traf6 regulatory axis controls autoimmunity and myelopoiesis, but is dispensable for hematopoietic stem cell homeostasis and tumor suppression. Proc Natl Acad Sci U S A 2017; 114 (34) E7140-E7149
  • 51 Fish JE, Cybulsky MI, Apo E. ApoE attenuates atherosclerosis via miR-146a. Circ Res 2015; 117 (01) 3-6
  • 52 Li K, Ching D, Luk FS, Raffai RL. Apolipoprotein E enhances microRNA-146a in monocytes and macrophages to suppress nuclear factor-κB-driven inflammation and atherosclerosis. Circ Res 2015; 117 (01) e1-e11
  • 53 Del Monte A, Arroyo AB, Andrés-Manzano MJ. et al. miR-146a deficiency in hematopoietic cells is not involved in the development of atherosclerosis. PLoS One 2018; 13 (06) e0198932
  • 54 Cheng HS, Besla R, Li A. et al. Paradoxical suppression of atherosclerosis in the absence of microRNA-146a. Circ Res 2017; 121 (04) 354-367
  • 55 Ma S, Tian XY, Zhang Y. et al. E-selectin-targeting delivery of microRNAs by microparticles ameliorates endothelial inflammation and atherosclerosis. Sci Rep 2016; 6: 22910
  • 56 Gareus R, Kotsaki E, Xanthoulea S. et al. Endothelial cell-specific NF-kappaB inhibition protects mice from atherosclerosis. Cell Metab 2008; 8 (05) 372-383
  • 57 Kanters E, Pasparakis M, Gijbels MJJ. et al. Inhibition of NF-kappaB activation in macrophages increases atherosclerosis in LDL receptor-deficient mice. J Clin Invest 2003; 112 (08) 1176-1185
  • 58 Nguyen MA, Karunakaran D, Geoffrion M. et al. Extracellular vesicles secreted by atherogenic macrophages transfer microRNA to inhibit cell migration. Arterioscler Thromb Vasc Biol 2018; 38 (01) 49-63
  • 59 Petrkova J, Borucka J, Kalab M. et al. Increased expression of miR-146a in valvular tissue from patients with aortic valve stenosis. Front Cardiovasc Med 2019; 6: 86
  • 60 Raitoharju E, Lyytikäinen LP, Levula M. et al. miR-21, miR-210, miR-34a, and miR-146a/b are up-regulated in human atherosclerotic plaques in the Tampere Vascular Study. Atherosclerosis 2011; 219 (01) 211-217
  • 61 Zhu GF, Chu T, Ruan Z. et al. Inflammation-related MicroRNAs are associated with plaque stability calculated by IVUS in coronary heart disease patients. J Interv Cardiol 2019; 2019: 9723129
  • 62 Takahashi Y, Satoh M, Minami Y, Tabuchi T, Itoh T, Nakamura M. Expression of miR-146a/b is associated with the Toll-like receptor 4 signal in coronary artery disease: effect of renin-angiotensin system blockade and statins on miRNA-146a/b and Toll-like receptor 4 levels. Clin Sci (Lond) 2010; 119 (09) 395-405
  • 63 Wang Y, Wang X, Li Z. et al. Two single nucleotide polymorphisms (rs2431697 and rs2910164) of miR-146a are associated with risk of coronary artery disease. Int J Environ Res Public Health 2017; 14 (05) 4-10
  • 64 Zhong H, Cai Y, Cheng J. et al. Apolipoprotein E epsilon 4 enhances the association between the rs2910164 polymorphism of miR-146a and risk of atherosclerotic cerebral infarction. J Atheroscler Thromb 2016; 23 (07) 819-829
  • 65 Jeon YJ, Kim OJ, Kim SY. et al. Association of the miR-146a, miR-149, miR-196a2, and miR-499 polymorphisms with ischemic stroke and silent brain infarction risk. Arterioscler Thromb Vasc Biol 2013; 33 (02) 420-430
  • 66 Sung J-H, Kim S-H, Yang W-I. et al. miRNA polymorphisms (miR‑146a, miR‑149, miR‑196a2 and miR‑499) are associated with the risk of coronary artery disease. Mol Med Rep 2016; 14 (03) 2328-2342
  • 67 Ramkaran P, Khan S, Phulukdaree A, Moodley D, Chuturgoon AA. miR-146a polymorphism influences levels of miR-146a, IRAK-1, and TRAF-6 in young patients with coronary artery disease. Cell Biochem Biophys 2014; 68 (02) 259-266
  • 68 Xiong X, Cho M, Cai X, Cheng J, Jing X. Mutation research / fundamental and molecular mechanisms of mutagenesis: a common variant in pre-miR-146 is associated with coronary artery disease risk and its mature miRNA expression. Mutat Res Fundam Mol Mech Mutagen 2014; •••: 76115-76120
  • 69 Bastami M, Ghaderian SMH, Omrani MD. et al. MiRNA-related polymorphisms in miR-146a and TCF21 are associated with increased susceptibility to coronary artery disease in an Iranian population. Genet Test Mol Biomarkers 2016; 20 (05) 241-248
  • 70 Zidar N, Boštjančič E, Glavač D, Štajer D. MicroRNAs, innate immunity and ventricular rupture in human myocardial infarction. Dis Markers 2011; 31 (05) 259-265
  • 71 Wang X, Ha T, Liu L. et al. Increased expression of microRNA-146a decreases myocardial ischaemia/reperfusion injury. Cardiovasc Res 2013; 97 (03) 432-442
  • 72 Seo HH, Lee SY, Lee CY. et al. Exogenous miRNA-146a enhances the therapeutic efficacy of human mesenchymal stem cells by increasing vascular endothelial growth factor secretion in the ischemia/reperfusion-injured heart. J Vasc Res 2017; 54 (02) 100-108
  • 73 Pan J, Alimujiang M, Chen Q, Shi H, Luo X. Exosomes derived from miR-146a-modified adipose-derived stem cells attenuate acute myocardial infarction-induced myocardial damage via downregulation of early growth response factor 1. J Cell Biochem 2019; 120 (03) 4433-4443
  • 74 Zhang T, Ma Y, Gao L. et al. MicroRNA-146a protects against myocardial ischaemia reperfusion injury by targeting Med1. Cell Mol Biol Lett 2019; 24: 62
  • 75 Shen L, Li C, Zhang H, Qiu S, Fu T, Xu Y. Downregulation of miR-146a contributes to cardiac dysfunction induced by the tyrosine kinase inhibitor sunitinib. Front Pharmacol 2019; 10: 914
  • 76 Huang W, Tian SS, Hang PZ, Sun C, Guo J, Du ZM. Combination of microRNA-21 and microRNA-146a attenuates cardiac dysfunction and apoptosis during acute myocardial infarction in mice. Mol Ther Nucleic Acids 2016; 5: e296
  • 77 He J, Lu Y, Song X, Gong X, Li Y. Inhibition of microRNA-146a attenuated heart failure in myocardial infarction rats. Biosci Rep 2019; 39 (12) 1-14
  • 78 Oh JG, Watanabe S, Lee A. et al. miR-146a suppresses SUMO1 expression and induces cardiac dysfunction in maladaptive hypertrophy. Circ Res 2018; 123 (06) 673-685
  • 79 Shu L, Zhang W, Huang G. et al. Troxerutin attenuates myocardial cell apoptosis following myocardial ischemia-reperfusion injury through inhibition of miR-146a-5p expression. J Cell Physiol 2019; 234 (06) 9274-9282
  • 80 Shao Y, Li J, Cai Y. et al. The functional polymorphisms of miR-146a are associated with susceptibility to severe sepsis in the Chinese population. Mediators Inflamm 2014; 2014: 916202
  • 81 Iba T, Levy JH. Inflammation and thrombosis: roles of neutrophils, platelets and endothelial cells and their interactions in thrombus formation during sepsis. J Thromb Haemost 2018; 16 (02) 231-241
  • 82 Bosmann M, Ward PA. The inflammatory response in sepsis. Trends Immunol 2013; 34 (03) 129-136
  • 83 Brudecki L, Ferguson DA, McCall CE, El Gazzar M. MicroRNA-146a and RBM4 form a negative feed-forward loop that disrupts cytokine mRNA translation following TLR4 responses in human THP-1 monocytes. Immunol Cell Biol 2013; 91 (08) 532-540
  • 84 Testa U, Pelosi E, Castelli G, Labbaye C. miR-146 and miR-155: two key modulators of immune response and tumor development. Noncoding RNA 2017; 3 (03) 22
  • 85 Banerjee S, Meng J, Das S. et al. Morphine induced exacerbation of sepsis is mediated by tempering endotoxin tolerance through modulation of miR-146a. Sci Rep 2013; 3: 1977
  • 86 Nahid MA, Satoh M, Chan EKL. Interleukin 1β-responsive microRNA-146a is critical for the cytokine-induced tolerance and cross-tolerance to Toll-like receptor ligands. J Innate Immun 2015; 7 (04) 428-440
  • 87 Liu M, John CM, Jarvis GA. Induction of endotoxin tolerance by pathogenic Neisseria is correlated with the inflammatory potential of lipooligosaccharides and regulated by microRNA-146a. J Immunol 2014; 192 (04) 1768-1777
  • 88 Molteni M, Bosi A, Saturni V, Rossetti C. MiR-146a induction by cyanobacterial lipopolysaccharide antagonist (CyP) mediates endotoxin cross-tolerance. Sci Rep 2018; 8 (01) 11367
  • 89 Funahashi Y, Kato N, Masuda T. et al. miR-146a targeted to splenic macrophages prevents sepsis-induced multiple organ injury. Lab Invest 2019; 99 (08) 1130-1142
  • 90 Bai X, Zhang J, Cao M. et al. MicroRNA-146a protects against LPS-induced organ damage by inhibiting Notch1 in macrophage. Int Immunopharmacol 2018; 63: 220-226
  • 91 Pan Y, Wang J, Xue Y. et al. GSKJ4 protects mice against early sepsis via reducing proinflammatory factors and up-regulating MiR-146a. Front Immunol 2018; 9: 2272
  • 92 Song Y, Dou H, Li X. et al. Exosomal miR-146a contributes to the enhanced therapeutic efficacy of interleukin-1β-primed mesenchymal stem cells against sepsis. Stem Cells 2017; 35 (05) 1208-1221
  • 93 Braza-Boïls A, Barwari T, Gutmann C. et al. Circulating microRNA levels indicate platelet and leukocyte activation in endotoxemia despite platelet p2y12 inhibition. Int J Mol Sci 2020; 21 (08) 2897
  • 94 Zhou J, Chaudhry H, Zhong Y. et al. Dysregulation in microRNA expression in peripheral blood mononuclear cells of sepsis patients is associated with immunopathology. Cytokine 2015; 71 (01) 89-100
  • 95 Han Y, Li Y, Jiang Y. The prognostic value of plasma microRNA-155 and microRNA-146a level in severe sepsis and sepsis-induced acute lung injury patients. Clin Lab 2016; 62 (12) 2355-2360
  • 96 Gao M, Wang X, Zhang X. et al. Attenuation of cardiac dysfunction in polymicrobial sepsis by microRNA-146a is mediated via targeting of IRAK1 and TRAF6 expression. J Immunol 2015; 195 (02) 672-682
  • 97 An R, Feng J, Xi C, Xu J, Sun L. miR-146a attenuates sepsis-induced myocardial dysfunction by suppressing IRAK1 and TRAF6 via targeting ErbB4 expression. Oxid Med Cell Longev 2018; 2018: 7163057
  • 98 Xie J, Zhang L, Fan X, Dong X, Zhang Z, Fan W. MicroRNA-146a improves sepsis-induced cardiomyopathy by regulating the TLR-4/NF-κB signaling pathway. Exp Ther Med 2019; 18 (01) 779-785
  • 99 Mitchell PS, Parkin RK, Kroh EM. et al. Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci U S A 2008; 105 (30) 10513-10518
  • 100 Grasedieck S, Sorrentino A, Langer C. et al. Circulating microRNAs in hematological diseases: principles, challenges, and perspectives. Blood 2013; 121 (25) 4977-4984
  • 101 Halushka PV, Goodwin AJ, Halushka MK. Opportunities for microRNAs in the crowded field of cardiovascular biomarkers. Annu Rev Pathol 2019; 14: 211-238
  • 102 Wagner J, Riwanto M, Besler C. et al. Characterization of levels and cellular transfer of circulating lipoprotein-bound microRNAs. Arterioscler Thromb Vasc Biol 2013; 33 (06) 1392-1400
  • 103 Oerlemans MIFJ, Mosterd A, Dekker MS. et al. Early assessment of acute coronary syndromes in the emergency department: the potential diagnostic value of circulating microRNAs. EMBO Mol Med 2012; 4 (11) 1176-1185
  • 104 Niculescu LS, Simionescu N, Sanda GM. et al. MiR-486 and miR-92a identified in circulating HDL discriminate between stable and vulnerable coronary artery disease patients. PLoS One 2015; 10 (10) e0140958
  • 105 Quan X, Ji Y, Zhang C. et al. Circulating MiR-146a may be a potential biomarker of coronary heart disease in patients with subclinical hypothyroidism. Cell Physiol Biochem 2018; 45 (01) 226-236
  • 106 Xue S, Zhu W, Liu D. et al. Circulating miR-26a-1, miR-146a and miR-199a-1 are potential candidate biomarkers for acute myocardial infarction. Mol Med 2019; 25 (01) 18
  • 107 Halkein J, Tabruyn SP, Ricke-Hoch M. et al. MicroRNA-146a is a therapeutic target and biomarker for peripartum cardiomyopathy. J Clin Invest 2013; 123 (05) 2143-2154
  • 108 Kin K, Miyagawa S, Fukushima S. et al. Tissue- and plasma-specific MicroRNA signatures for atherosclerotic abdominal aortic aneurysm. J Am Heart Assoc 2012; 1 (05) e000745
  • 109 Essandoh K, Fan G-C. Role of extracellular and intracellular microRNAs in sepsis. Biochim Biophys Acta 2014; 1842 (11) 2155-2162
  • 110 Wang J-F, Yu M-L, Yu G. et al. Serum miR-146a and miR-223 as potential new biomarkers for sepsis. Biochem Biophys Res Commun 2010; 394 (01) 184-188
  • 111 Wang L, Wang HC, Chen C. et al. Differential expression of plasma miR-146a in sepsis patients compared with non-sepsis-SIRS patients. Exp Ther Med 2013; 5 (04) 1101-1104
  • 112 Caserta S, Kern F, Cohen J, Drage S, Newbury SF, Llewelyn MJ. Circulating plasma microRNAs can differentiate human sepsis and systemic inflammatory response syndrome (SIRS). Sci Rep 2016; 6: 28006
  • 113 Chen L, Yu L, Zhang R, Zhu L, Shen W. Correlation of microRNA-146a/b with disease risk, biochemical indices, inflammatory cytokines, overall disease severity, and prognosis of sepsis. Medicine (Baltimore) 2020; 99 (22) e19754
  • 114 Warnatsch A, Ioannou M, Wang Q, Papayannopoulos V. Inflammation. Neutrophil extracellular traps license macrophages for cytokine production in atherosclerosis. Science 2015; 349 (6245): 316-320
  • 115 Clark SR, Ma AC, Tavener SA. et al. Platelet TLR4 activates neutrophil extracellular traps to ensnare bacteria in septic blood. Nat Med 2007; 13 (04) 463-469
  • 116 Sunderland N, Skroblin P, Barwari T. et al. MicroRNA biomarkers and platelet reactivity: the clot thickens. Circ Res 2017; 120 (02) 418-435
  • 117 Ramón-Núñez LA, Martos L, Fernández-Pardo Á. et al. Comparison of protocols and RNA carriers for plasma miRNA isolation. Unraveling RNA carrier influence on miRNA isolation. PLoS One 2017; 12 (10) e0187005
  • 118 Mompeón A, Ortega-Paz L, Vidal-Gómez X. et al. Disparate miRNA expression in serum and plasma of patients with acute myocardial infarction: a systematic and paired comparative analysis. Sci Rep 2020; 10 (01) 5373
  • 119 Keller A, Rounge T, Backes C. et al. Sources to variability in circulating human miRNA signatures. RNA Biol 2017; 14 (12) 1791-1798
  • 120 Chyrchel B, Totoń-Żurańska J, Kruszelnicka O. et al. Association of plasma miR-223 and platelet reactivity in patients with coronary artery disease on dual antiplatelet therapy: a preliminary report. Platelets 2015; 26 (06) 593-597
  • 121 Bonneau E, Neveu B, Kostantin E, Tsongalis GJ, De Guire V. How close are miRNAs from clinical practice? A perspective on the diagnostic and therapeutic market. EJIFCC 2019; 30 (02) 114-127
  • 122 Huang CK, Kafert-Kasting S, Thum T. Preclinical and clinical development of noncoding RNA therapeutics for cardiovascular disease. Circ Res 2020; 126 (05) 663-678
  • 123 Hou J, Wang P, Lin L. et al. MicroRNA-146a feedback inhibits RIG-I-dependent type I IFN production in macrophages by targeting TRAF6, IRAK1, and IRAK2. J Immunol 2009; 183 (03) 2150-2158
  • 124 King JK, Ung NM, Paing MH. et al. Regulation of marginal zone B-cell differentiation by microRNA-146a. Front Immunol 2017; 7: 670
  • 125 Liu W, He J, Yang Y, Guo Q, Gao F. Upregulating miR-146a by physcion reverses multidrug resistance in human chronic myelogenous leukemia K562/ADM cells. Am J Cancer Res 2016; 6 (11) 2547-2560
  • 126 Ji G, Lv K, Chen H. et al. MiR-146a regulates SOD2 expression in H2O2 stimulated PC12 cells. PLoS One 2013; 8 (07) e69351
  • 127 Crone SG, Jacobsen A, Federspiel B. et al. microRNA-146a inhibits G protein-coupled receptor-mediated activation of NF-κB by targeting CARD10 and COPS8 in gastric cancer. Mol Cancer 2012; 11: 71
  • 128 Perry MM, Moschos SA, Williams AE, Shepherd NJ, Larner-Svensson HM, Lindsay MA. Rapid changes in microRNA-146a expression negatively regulate the IL-1β-induced inflammatory response in human lung alveolar epithelial cells. J Immunol 2008; 180 (08) 5689-5698
  • 129 Cornett AL, Lutz CS. Regulation of COX-2 expression by miR-146a in lung cancer cells. RNA 2014; 20 (09) 1419-1430