CC BY-NC-ND 4.0 · Klinische Neurophysiologie 2021; 52(01): 39-43
DOI: 10.1055/a-1351-8552
Übersicht

Anwendung von Wearables bei Multipler Sklerose

The Use of Wearable Devices in Multiple Sclerosis
Tobias Monschein
,
Fritz Leutmezer
,
Patrick Altmann

Zusammenfassung

Wearables sind mit Sensoren ausgestattete Geräte oder Funktionskleidung, welche im Bereich der Multiplen Sklerose bis dato v. a. zur Messung von Bewegung in Form von Accelerometern in Verwendung sind. Im Gegensatz zu technisch aufwendigen Ganganalysesystemen und neurologischen Funktionstests können solche Wearables im Alltag einfach eingesetzt werden und bieten die Möglichkeit Ausmaß, Geschwindigkeit und Dauer von Bewegung auch über längere Zeiträume zu erfassen. Zusätzlich können auch spezifischere Parameter wie Schrittlänge, Bewegungsumfang einzelner Gelenke sowie physiologische und pathologische Bewegungsmuster dokumentiert werden. Die durch Accelerometer erhobenen Informationen korrelieren gut mit der körperlichen Aktivität im Alltag, kardiorespiratorischen Biomarkern der Bewegung, dem Ausmaß der Behinderung aber auch mit technisch aufwendigen Ganganalysen.

Insofern werden Wearables in Zukunft eine immer wichtigere Rolle spielen, wenn es darum geht, die Beweglichkeit als einen der wichtigsten Faktoren der Lebensqualität von Personen mit MS im Alltag reliabel und einfach zu messen.

Abstract

Wearable devices in multiple sclerosis mostly concern accelerometers used to detect several aspects of motion. These devices are easily accessible and monitor various aspects of motion such as range, velocity and duration over an extended period of time. In contrast, conventional tools for gait analysis and neurological test consume considerable resources hindering their continuous use. In contrast to costly and time consuming gait analyzing tools and neurologic tests, wearables are easy to use in daily practice and are able to detect different aspects of motion like extent, velocity, and duration also over an extended period of time. Additionally, more specific parameters of gait, like stride length, angle of motion, cadence and physiologic as well as disease-specific patterns of motion can be documented more easily. Accelerometer data show good correlation with overall physical activity but also with cardiorespiratory biomarkers of motion as well as MS-related disability, as measured by the Expanded Disability Status Scale (EDSS) score.

Therefore, in the future, wearables will play a major role in the documentation of physical activity, which is one of the most relevant factors for Quality of Life in persons with MS.



Publikationsverlauf

Artikel online veröffentlicht:
23. Februar 2021

© 2021. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial-License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/).

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • Literatur

  • 1 Salhofer-Polanyi S, Cetin H, Leutmezer F. et al. Epidemiology of Multiple Sclerosis in Austria. Neuroepidemiology 2017; 49: 40-44
  • 2 Compston A, Coles A. Multiple sclerosis. Lancet 2008; 372: 1502-1517
  • 3 Montalban X, Gold R, Thompson AJ. et al. ECTRIMS/EAN Guideline on the pharmacological treatment of people with multiple sclerosis. Mult Scler 2018; 24: 96-120
  • 4 Mahad DH, Trapp BD, Lassmann H. Pathological mechanisms in progressive multiple sclerosis. Lancet Neurol 2015; 14: 183-193
  • 5 Harlow DE, Honce JM, Miravalle AA. Remyelination Therapy in Multiple Sclerosis. Front Neurol 2015; 6: 257
  • 6 McCabe MP, McKern S, McDonald E. et al. Changes over time in sexual and relationship functioning of people with multiple sclerosis. J Sex Marital Ther 2003; 29: 305-321
  • 7 Fischer JS, Rudick RA, Cutter GR. et al. The Multiple Sclerosis Functional Composite Measure (MSFC): an integrated approach to MS clinical outcome assessment. National MS Society Clinical Outcomes Assessment Task Force. Multiple Sclerosis. Journal 1999; 5: 244-250
  • 8 Hobart JC, Riazi A, Lamping DL. et al. Measuring the impact of MS on walking ability: The 12-Item MS Walking Scale (MSWS-12). Neurology 2003; 60: 31-36
  • 9 Heitkamp HC. Wearables – Die Bedeutung der neuen Technologie für die Sportmedizin. Dtsch Z Sportmed 2016; 2016: 285-286
  • 10 Saris WH, Binkhorst RA. The use of pedometer and actometer in studying daily physical activity in man. Part II: validity of pedometer and actometer measuring the daily physical activity. Eur J Appl Physiol Occup Physiol 1977; 37: 229-235
  • 11 Saris WH, Binkhorst RA. The use of pedometer and actometer in studying daily physical activity in man. Part II: validity of pedometer and actometer measuring the daily physical activity. Eur J Appl Physiol Occup Physiol 1977; 37: 229-235
  • 12 Chen KY, Bassett DR. The technology of accelerometry-based activity monitors: current and future. Med Sci Sports Exerc 2005; 37: S490-S500
  • 13 Matson RIB, Leary SD, Cooper AR. et al. Objective Measurement of Physical Activity in Adults With Newly Diagnosed Type 1 Diabetes and Healthy Individuals. Front Public Health 2018; 6: 360
  • 14 Maddocks M, Granger CL. Measurement of physical activity in clinical practice and research: advances in cancer and chronic respiratory disease. Curr Opin Support. Palliat Care 2018; 12: 219-226
  • 15 Bornstein A, Hedström A, Wasling P. Actigraphy measurement of physical activity and energy expenditure in narcolepsy type 1, narcolepsy type 2 and idiopathic hypersomnia: A Sensewear Armband study. J Sleep Res 13.04.2020; e13038
  • 16 Strømmen AM, Christensen T, Jensen K. Quantitative measurement of physical activity in acute ischemic stroke and transient ischemic attack. Stroke 2014; 45: 3649-3655
  • 17 Case MA, Burwick HA, Volpp KG. et al. Accuracy of smartphone applications and wearable devices for tracking physical activity data. JAMA 2015; 313: 625-626
  • 18 Dyrstad SM, Hansen BH, Holme IM. et al. Comparison of self-reported versus accelerometer-measured physical activity. Med Sci Sports Exerc 2014; 46: 99-106
  • 19 Atienza AA, Moser RP, Perna F. et al. Self-reported and objectively measured activity related to biomarkers using NHANES. Med Sci Sports Exerc 2011; 43: 815-821
  • 20 Casey B, Coote S, Donnelly A. Objective physical activity measurement in people with multiple sclerosis: a review of the literature. Disabil Rehabil Assist Technol 2018; 13: 124-131
  • 21 Motl RW, Pilutti L, Sandroff BM. et al. Accelerometry as a measure of walking behavior in multiple sclerosis. Acta Neurol Scand 2013; 127: 384-390
  • 22 Busse ME, Pearson OR, Van Deursen R. et al. Quantified measurement of activity provides insight into motor function and recovery in neurological disease. J Neurol Neurosurg Psychiatry 2004; 75: 884-888
  • 23 Flachenecker F, Gaßner H, Hannik J. et al. Objective sensor-based gait measures reflect motor impairment in multiple sclerosis patients_ Reliability and clinical validation of a wearable sensor device. Mult Scler Relat Disord 2020; 39: 101903
  • 24 Vienne-Jumeau A, Quijoux F, Vidal PP. et al. Value of gait analysis for measuring disease severity using inertial sensors in patients with multiple sclerosis: protocol for a systematic review and meta-analysis. Syst Rev 2019; 8: 15-15
  • 25 Solomon AJ, Jacobs JV, Lomond KV. et al. Detection of postural sway abnormalities by wireless inertial sensors in minimally disabled patients with multiple sclerosis: a case-control study. J Neuroeng Rehabil 2015; 12: 74-79
  • 26 Dlugonski D, Pilutti LA, Sandroff BM. et al. Steps Per Day Among Persons With Multiple Sclerosis: Variation by Demographic, Clinical, and Device Characteristics. Arch Physiol Med Rehabil 2013; 94: 1534-1539
  • 27 Kasser SL, Jacobs JV, Sibold J. et al. Using Body-Worn Sensors to Detect Changes in Balance and Mobility After Acute Aerobic Exercise in Adults with Multiple Sclerosis. Int J MS Care 2020; 22: 1-6
  • 28 Psarakis M, Greene DA, Cole MH. et al. Wearable technology reveals gait compensations, unstable walking patterns and fatigue in people with multiple sclerosis. Physiol Meas 16.07.2018; 39(7): 075004
  • 29 Coote S, Sosnoff JJ, Gunn H. Fall Incidence as the Primary Outcome in Multiple Sclerosis Falls-Prevention Trials: Recommendation from the International MS Falls Prevention Research Network. Int J MS Care 2014; 16: 178-184
  • 30 Peterson EW, Cho CC, Koch von L. et al. Injurious Falls Among Middle Aged and Older Adults With Multiple Sclerosis. Arch Phys Med Rehabil 2008; 89: 1031-1037
  • 31 Matsuda PN, Eagen T, Hreha KP. et al. Relationship Between Fear of Falling and Physical Activity in People Aging With a Disability. PM&R 2019; 12: 454-461
  • 32 Peterson EW, Cho CC, Finlayson ML. Fear of falling and associated activity curtailment among middle aged and older adults with multiple sclerosis. Multiple Sclerosis. Journal 2007; 13: 1168-1175
  • 33 Sosnoff JJ, Sandroff BM, Pula JH. et al. Falls and Physical Activity in Persons with Multiple Sclerosis. Mult Scler Int 2012; 2012: 1-5
  • 34 Socie MJ, Sandroff BM, Pula JH. et al. Footfall placement variability and falls in multiple sclerosis. Ann Biomed Eng 2013; 41: 1740-1747
  • 35 Quinn G, Comber L, Galvin R. et al. The ability of clinical balance measures to identify falls risk in multiple sclerosis: a systematic review and meta-analysis. Clin Rehabil 2018; 32: 571-582
  • 36 McGinnis RS, Mahadevan N, Moon Y. et al. A machine learning approach for gait speed estimation using skin-mounted wearable sensors: From healthy controls to individuals with multiple sclerosis. PLoS ONE 2017; 12: e0178366
  • 37 Filli L, Sutter T, Easthope CS. et al. Profiling walking dysfunction in multiple sclerosis: characterisation, classification and progression over time. Sci Rep 2018; 8: 129-13
  • 38 Moon Y, Wajda DA, Motl RW. et al. Stride-Time Variability and Fall Risk in Persons with Multiple Sclerosis. Mult Scler Int 2015; 2015: 1-7
  • 39 Meyer BM, Tulipani LJ, Gurchiek RD. et al. Wearables and Deep Learning Classify Fall Risk from Gait in Multiple Sclerosis. J Biomed Health Inform 18.09.2020; 1