Aktuelle Rheumatologie 2023; 48(02): 118-123
DOI: 10.1055/a-1386-3344
Originalarbeit

Association Analysis of CMYA5 rs4704591 Polymorphism with Rheumatoid Arthritis in Caucasians

Assoziationsanalyse des CMYA5 rs4704591-Polymorphismus mit rheumatoider Arthritis bei Kaukasiern
Mansour Zamanpoor
1   Biochemistry, University of Otago, Dunedin, New Zealand
2   Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran (the Islamic Republic of)
4   Wellington Regional Genetics Laboratory, Wellington Regional Hospital, Wellington, New Zealand
,
Natsha Anne Austin
1   Biochemistry, University of Otago, Dunedin, New Zealand
,
Hamid Ghaedi
2   Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran (the Islamic Republic of)
,
Nadine H. Nograles
3   Biomedical Sciences, Newcastle University Medicine Malaysia, Nusajaya, Malaysia
,
Angela E. Brown
4   Wellington Regional Genetics Laboratory, Wellington Regional Hospital, Wellington, New Zealand
,
Andrew D. Wilson
4   Wellington Regional Genetics Laboratory, Wellington Regional Hospital, Wellington, New Zealand
5   Department of Pathology and Molecular Medicine, University of Otago, Wellington, New Zealand
,
Tony R. Merriman
1   Biochemistry, University of Otago, Dunedin, New Zealand
,
Ian M. Morison
6   Pathology, University of Otago, Dunedin, New Zealand
,
Mir Davood Omrani
2   Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran (the Islamic Republic of)
› Author Affiliations

Zusammenfassung

Einleitung Einzel nukleotid polymorphismen (SNPs) im Cardiomyopathy-Associated Protein 5 (CMYA5)-Gen wurden in genomweiten Assoziationsstudien mit rheumatoider Arthritis (RA) in Verbindung gebracht. In dieser Studie wollten wir die Assoziation zwischen CMYA5-Genpolymorphismen und RA in unabhängigen kaukasischen Fall-Kontroll-Kohorten replizieren und eine Metaanalyse durchführen, um die Assoziation von CMYA5-Genpolymorphismen mit RA in kaukasischen Populationen zu untersuchen.

Methoden Wir analysierten 2731 RA-Fälle und 1783 gesunde Kontrollen in vier unabhängigen kaukasischen Probensätzen. rs4704591 im CMYA5-Gen wurden unter Verwendung des TaqMan SNP-Genotypisierungsassays genotypisiert. Die Metaanalyse wurde über kaukasische Kohorten hinweg durchgeführt.

Ergebnisse Unsere Analyse ergab keine Hinweise auf eine Assoziation von rs4704591 mit RA in den Replikationsprobensätzen (P=0,941, OR=0,997). Die Metaanalyse zeigte eine schwache Assoziation zwischen dem kleinen Allel der CMYA5-Variante rs4704591 (C) und RA in den kombinierten RA-Kohorten (P=0,023, OR=0,938) unter Verwendung des logistischen Regressionsmodells in der Matched-Case-Control-Studie.

Schlussfolgerung Unsere Studie war nicht erfolgreich darin, die Assoziation der CMYA5-Variante rs4704591 mit RA zu replizieren. Daher können wir die Assoziation zwischen CMYA5-Genpolymorphismen und RA in der kaukasischen Bevölkerung nicht bestätigen.

Abstract

Introduction Single nucleotide polymorphisms (SNPs) in the Cardiomyopathy-Associated Protein 5 (CMYA5) gene have been associated with rheumatoid arthritis (RA) in genome-wide association studies. In this study, we aimed to replicate the association between CMYA5 gene polymorphisms and RA in independent Caucasian case-control cohorts and perform a meta-analysis to investigate the association of CMYA5 gene polymorphisms with RA in Caucasian populations.

Methods We analysed 2731 RA cases and 1783 healthy controls in 4 independent Caucasian sample sets. rs4704591 in CMYA5 gene was genotyped using the TaqMan SNP genotyping assay. Meta-analysis was conducted across Caucasian cohorts.

Results Our analysis showed no evidence for association of rs4704591 with RA in the replication sample sets (p=0.941, OR=0.997). Meta analysis showed a weak association between the minor allele of the CMYA5 rs4704591 variant (C) and RA in the combined RA cohorts (p=0.023, OR=0.938) using the logistic regression model in the matched case-control study.

Conclusion Our study failed to replicate the association of the CMYA5 rs4704591 variant with RA and therefore, we cannot confirm the association between CMYA5 gene polymorphisms and RA in Caucasian population. However, further investigation might help to unravel the association of CMYA5 gene variants with RA.



Publication History

Article published online:
15 November 2022

© 2022. Thieme. All rights reserved.

Georg Thieme Verlag
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Zamanpoor M. The genetic pathogenesis, diagnosis and therapeutic insight of rheumatoid arthritis. Clinical genetics 2019; 95: 547-557 doi:10.1111/cge.13498
  • 2 Chen X, Lee G, Maher B. et al. GWA study data mining and independent replication identify cardiomyopathy-associated 5 (CMYA5) as a risk gene for schizophrenia. Molecular psychiatry 2011; 16: 1117-1129
  • 3 Sarparanta J. Biology of myospryn: what’s known?. Journal of muscle research and cell motility 2008; 29: 177-180 doi:10.1007/s10974-008-9165-6
  • 4 Burton PR, Clayton DG, Cardon LR. et al. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 2007; 447: 661-678
  • 5 Julia A, Ballina J, Canete JD. et al. Genome-wide association study of rheumatoid arthritis in the Spanish population: KLF12 as a risk locus for rheumatoid arthritis susceptibility. Arthritis and rheumatism 2008; 58: 2275-2286 doi:10.1002/art.23623
  • 6 Tsoupri E, Capetanaki Y. Muyospryn: a multifunctional desmin-associated protein. Histochemistry and cell biology 2013; 140: 55-63 doi:10.1007/s00418-013-1103-z
  • 7 Talbot K, Cho D-S, Ong W-Y. et al. Dysbindin-1 is a synaptic and microtubular protein that binds brain snapin. Human molecular genetics 2006; 15: 3041-3054
  • 8 Benson MA, Tinsley CL, Blake DJ. Myospryn is a novel binding partner for dysbindin in muscle. J Biol Chem 2004; 279: 10450-10458 doi:10.1074/jbc.M312664200
  • 9 Zhang R, Zhang H, Li M. et al. Genetic analysis of common variants in the CMYA5 (cardiomyopathy-associated 5) gene with schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 2013; 46: 64-69 doi:10.1016/j.pnpbp.2013.05.015
  • 10 Kouloumenta A, Mavroidis M, Capetanaki Y. Proper perinuclear localization of the TRIM-like protein myospryn requires its binding partner desmin. The Journal of biological chemistry 2007; 282: 35211-35221 doi:10.1074/jbc.M704733200
  • 11 Arnett F, Edworthy S, Bloch D. et al. The American Rheumatism Association 1987 revised criteria for the classification of rheumatoid arthritis. Arthritis & Rheumatism 1988; 31: 315-324
  • 12 Arnold M, Raffler J, Pfeufer A. et al. SNiPA: an interactive, genetic variant-centered annotation browser. Bioinformatics 2015; 31: 1334-1336 doi:10.1093/bioinformatics/btu779
  • 13 Wang KS, Liu XF, Aragam N. A genome-wide meta-analysis identifies novel loci associated with schizophrenia and bipolar disorder. Schizophrenia research 2010; 124: 192-199 doi:10.1016/j.schres.2010.09.002
  • 14 Shi Y, He L. SHEsis, a powerful software platform for analyses of linkage disequilibrium, haplotype construction, and genetic association at polymorphism loci. Cell Research 2005; 15: 97-98
  • 15 Purcell S, Neale B, Todd-Brown K. et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. American journal of human genetics 2007; 81: 559-575 doi:10.1086/519795
  • 16 Horita N, Kaneko T. Genetic model selection for a case-control study and a meta-analysis. Meta gene 2015; 5: 1-8 doi:10.1016/j.mgene.2015.04.003
  • 17 Okada Y, Wu D, Trynka G. et al. Genetics of rheumatoid arthritis contributes to biology and drug discovery. Nature 2014; 506: 376-381 doi:10.1038/nature12873
  • 18 Manchia M, Cullis J, Turecki G. et al. The impact of phenotypic and genetic heterogeneity on results of genome wide association studies of complex diseases. PLoS One 2013; 8: e76295. doi:10.1371/journal.pone.0076295
  • 19 Wei WH, Viatte S, Merriman TR. et al. Genotypic variability based association identifies novel non-additive loci DHCR7 and IRF4 in sero-negative rheumatoid arthritis. Scientific reports 2017; 7: 5261. doi:10.1038/s41598-017-05447-1
  • 20 Williams NM, O’Donovan MC, Owen MJ. Is the dysbindin gene (DTNBP1) a susceptibility gene for schizophrenia?. Schizophrenia bulletin 2005; 31: 800-805
  • 21 Owen MJ, Williams NM, O’Donovan MC. Dysbindin-1 and schizophrenia: from genetics to neuropathology. J Clin Invest 2004; 113: 1255-1257 doi:10.1172/JCI21470
  • 22 Straub RE, Jiang Y, MacLean CJ. et al. Genetic variation in the 6p22.3 gene DTNBP1, the human ortholog of the mouse dysbindin gene, is associated with schizophrenia. Am J Hum Genet 2002; 71: 337-348 doi:10.1086/341750
  • 23 Zamanpoor M. Schizophrenia in a genomic era: a review from the pathogenesis, genetic and environmental etiology to diagnosis and treatment insights. Psychiatric genetics 2020; 30: 1-39 doi:10.1097/YPG.0000000000000245
  • 24 Numakawa T, Yagasaki Y, Ishimoto T. et al. Evidence of novel neuronal functions of dysbindin, a susceptibility gene for schizophrenia. Human Molecular Genetics 2004; 13: 2699
  • 25 Foey AD, Field S, Ahmed S. et al. Impact of VIP and cAMP on the regulation of TNF-alpha and IL-10 production: implications for rheumatoid arthritis. Arthritis Res Ther 2003; 5: R317-R328 doi:10.1186/ar99