Aktuelle Rheumatologie 2021; 46(03): 258-266
DOI: 10.1055/a-1389-7949
Übersichtsarbeit

Das gestresste Immunsystem und Autoimmunität

The Stressed Immune System and Autoimmunity
Georg Pongratz
1   Poliklinik, Funktionsbereich und Hiller Forschungszentrum für Rheumatologie, Universitätsklinikum Düsseldorf, Düsseldorf, Deutschland
› Author Affiliations

Zusammenfassung

Über einen möglichen Zusammenhang zwischen psychologischem Stress, Immunsystem und Autoimmunität wird schon lange debattiert. Erkenntnisse aus der Grundlagen- und epidemiologischen Forschung, die das Verständnis für diesen komplexen Zusammenhang erhöhen werden in dieser kurzen Übersicht zusammengestellt. Zunächst werden bekannte anatomisch-physiologische Grundlagen für einen Zusammenhang zwischen psychologischem Stress und Immunsystem dargestellt. Es wird beschrieben, dass die Interaktion zwischen Gehirn über autonomes Nervensystem und Hormonsystem bis zur Immunzelle mit entsprechenden Rezeptoren für Neurotransmitter und Hormone mittlerweile bis auf die molekulare Ebene gut beschrieben ist. Im Rahmen der akuten Stressreaktion treten charakteristische Veränderungen im Immunsystem auf, die ebenfalls gut dokumentiert sind. In einem zweiten Teil wird dann beschrieben welche Veränderungen im Rahmen einer chronischen Stressbelastung am Immunsystem auftreten können und zuletzt wird diskutiert inwiefern diese Veränderungen auch für pathophysiologische Zustände des Immunsystems, z. B. im Rahmen von Autoimmunerkrankungen, relevant sein könnten. Zusammenfassend führt akuter Stress, im Sinne der optimalen Vorbereitung einer fight&flight Situation, zu einer Steigerung der Immunfunktion v. a. der humoralen Immunität, wohingegen die Auswirkungen von chronischem Stress weniger klar definiert sind und es eher zu einer Immundysregulation mit verminderter basaler Immunfunktion, v. a. der zytotoxischen Funktion aber einer gesteigerten Reaktion nach Aktivierung, v. a. im angeborenen Immunschenkel kommt. Epidemiologische Daten belegen gut, dass chronischer Stress zu einer erhöhten Suzeptibilität für Autoimmunerkrankungen führt. Erste klinische Anwendungen, wie beispielsweise die gezielte neuronale Stimulation des N. vagus sind in Erprobung, für einen breiteren klinischen Einsatz sollten aber die biologischen Netzwerkstrukturen noch besser verstanden werden, um die besten Angriffspunkte zu finden.

Abstract

A possible Interaction between psychological stress, immune system and autoimmunity has been discussed for a long time. This short review provides evidence from basic and epidemiological research that contributes to a better understanding of these complex interactions. Firstly, known anatomical physiological basic conditions for the interaction between psychological stress and immune system are presented. It will be discussed whether the interaction between the brain, via the autonomic nervous system and the endocrine system, to the individual immune cell bearing the receptors for neurotransmitters and hormones is well characterised down to the molecular level. In the context of an acute stress response, characteristic changes within the immune system are noted, which are also well documented. In a second part, alterations in the immune system are described that may result from chronic stress exposure. Finally, it will be discussed in what way these alterations are also relevant for the development of pathophysiological immune conditions, such as autoimmunity. In conclusion, acute stress supports immune function, especially humoral immunity, to optimally prepare the fight or flight reaction. On the other hand, the effect of chronic stress is less well defined and chronic stress rather leads to Immunodysregulation with decreased basal immune function, especially cytotoxic function, but enhanced responses upon activation, especially of the innate branch. Epidemiological data provides solid evidence that chronic stress exposure leads to increased susceptibility for autoimmune diseases. First clinical applications, e. g. targeted neuronal vagal nerve stimulation, are currently under investigation, However, broader clinical use would require greater understanding of the underlying biological networks, in order to identify the best targets for intervention.



Publication History

Article published online:
29 March 2021

© 2021. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • Literatur

  • 1 Williams JM, Peterson RG, Shea PA. et al. Sympathetic innervation of murine thymus and spleen: evidence for a functional link between the nervous and immune systems. Brain research bulletin 1981; 6: 83-94
  • 2 Felten DL, Felten SY, Carlson SL. et al. Noradrenergic and peptidergic innervation of lymphoid tissue. Journal of immunology (Baltimore, Md: 1950) 1985; 135 (Suppl. 02) 755s-65s.
  • 3 Bleck D, Ma L, Erdene-Bymbadoo L. et al. Introduction and validation of a new semi-automated method to determine sympathetic fiber density in target tissues. PloS one 2019; 14: e0217475
  • 4 Wülfing C, Schuran FA, Urban J. et al. Neural architecture in lymphoid organs: Hard-wired antigen presenting cells and neurite networks in antigen entrance areas. Immunity, inflammation and disease 2018; 6: 354-370
  • 5 Hench PS, Kendall EC. et al. The effect of a hormone of the adrenal cortex (17-hydroxy-11-dehydrocorticosterone; compound E) and of pituitary adrenocorticotropic hormone on rheumatoid arthritis. Proceedings of the staff meetings Mayo Clinic 1949; 24: 181-197
  • 6 Sayers G, Sayers MA. Regulation of anterior pituitary activity during stress. Proceedings American Federation for Clinical Research 1945; 2: 96
  • 7 Last JH. Adaptation to stress; pituitary-adrenal mechanisms. Modern hospital 1949; 73: 106-110
  • 8 Cutolo M, Straub RH, Bijlsma JW. Neuroendocrine-immune interactions in synovitis. Nature clinical practice Rheumatology 2007; 3: 627-634
  • 9 Akalu Y, Molla MD, Dessie G. et al. Physiological Effect of Ghrelin on Body Systems. International journal of endocrinology 2020; 2020: 1385138
  • 10 De Luca R, Davis PJ, Lin HY. et al. Thyroid Hormones Interaction With Immune Response, Inflammation and Non-thyroidal Illness Syndrome. Frontiers in cell and developmental biology 2020; 8: 614030
  • 11 Board F, Persky H, Hamburg DA. Psychological stress and endocrine functions; blood levels of adrenocortical and thyroid hormones in acutely disturbed patients. Psychosomatic medicine 1956; 18: 324-333
  • 12 Hadden JW, Hadden EM, Middleton E. Lymphocyte blast transformation. I. Demonstration of adrenergic receptors in human peripheral lymphocytes. Cellular immunology 1970; 1: 583-595
  • 13 Hollander N, Chiu YW. In vitro binding of cortisol-1,2-3H by a substance in the supernatant fraction of P1798 mouse lymphosarcoma. Biochemical and biophysical research communications 1966; 25: 291-297
  • 14 Kerage D, Sloan EK, Mattarollo SR. et al. Interaction of neurotransmitters and neurochemicals with lymphocytes. Journal of neuroimmunology 2019; 332: 99-111
  • 15 Csaba G. Hormones in the immune system and their possible role. A critical review. Acta microbiologica et immunologica Hungarica 2014; 61: 241-260
  • 16 Straub RH, Cutolo M, Buttgereit F. et al. Energy regulation and neuroendocrine-immune control in chronic inflammatory diseases. Journal of internal medicine 2010; 267: 543-560
  • 17 Pongratz G, Straub RH. The sympathetic nervous response in inflammation. Arthritis research & therapy 2014; 16: 504
  • 18 Bierhaus A, Wolf J, Andrassy M. et al. A mechanism converting psychosocial stress into mononuclear cell activation. Proceedings of the National Academy of Sciences of the United States of America 2003; 100: 1920-1925
  • 19 Klatt S, Stangl H, Kunath J. et al. Peripheral elimination of the sympathetic nervous system stimulates immunocyte retention in lymph nodes and ameliorates collagen type II arthritis. Brain, behavior, and immunity 2016; 54: 201-210
  • 20 Graff RM, Kunz HE, Agha NH. et al. β(2)-Adrenergic receptor signaling mediates the preferential mobilization of differentiated subsets of CD8+ T-cells, NK-cells and non-classical monocytes in response to acute exercise in humans. Brain, behavior, and immunity 2018; 74: 143-153
  • 21 Gurfein BT, Hasdemir B, Milush JM. et al. Enriched environment and stress exposure influence splenic B lymphocyte composition. PloS one 2017; 12: e0180771
  • 22 Pongratz G, Straub RH. Role of peripheral nerve fibres in acute and chronic inflammation in arthritis. Nature reviews Rheumatology 2013; 9: 117-126
  • 23 Pongratz G, McAlees JW, Conrad DH. et al. The level of IgE produced by a B cell is regulated by norepinephrine in a p38 MAPK- and CD23-dependent manner. Journal of immunology (Baltimore, Md : 1950) 2006; 177: 2926-2938
  • 24 Padro CJ, Sanders VM. Neuroendocrine regulation of inflammation. Seminars in immunology 2014; 26: 357-368
  • 25 Dantzer R, O'Connor JC, Freund GG. et al. From inflammation to sickness and depression: when the immune system subjugates the brain. Nature reviews Neuroscience 2008; 9: 46-56
  • 26 Kaufmann FN, Costa AP, Ghisleni G. et al. NLRP3 inflammasome-driven pathways in depression: Clinical and preclinical findings. Brain, behavior, and immunity 2017; 64: 367-383
  • 27 Nie X, Kitaoka S, Tanaka K. et al. The Innate Immune Receptors TLR2/4 Mediate Repeated Social Defeat Stress-Induced Social Avoidance through Prefrontal Microglial Activation. Neuron 2018; 99: 464-479.e7
  • 28 Bellón J, Conejo-Cerón S, Sánchez-Calderón A. et al. Effectiveness of exercise-based interventions in reducing depressive symptoms in people without clinical depression: systematic review and meta-analysis of randomised controlled trials. The British journal of psychiatry: the journal of mental science. 2021 Feb 3. 1-10
  • 29 Fernández-Abascal B, Suárez-Pinilla P, Cobo-Corrales C. et al. In- and outpatient lifestyle interventions on diet and exercise and their effect on physical and psychological health: a systematic review and meta-analysis of randomised controlled trials in patients with schizophrenia spectrum disorders and first episode of psychosis. Neuroscience and biobehavioral reviews. 2021 125. 535-568
  • 30 Nehlsen-Cannarella SL, Nieman DC, Jessen J. et al. The effects of acute moderate exercise on lymphocyte function and serum immunoglobulin levels. International journal of sports medicine 1991; 12: 391-398
  • 31 Nieman DC, Simandle S, Henson DA. et al. Lymphocyte proliferative response to 2.5 hours of running. International journal of sports medicine 1995; 16: 404-409
  • 32 Segerstrom SC, Miller GE. Psychological stress and the human immune system: a meta-analytic study of 30 years of inquiry. Psychological bulletin 2004; 130: 601-630
  • 33 Pervanidou P, Chrousos GP. Neuroendocrinology of post-traumatic stress disorder. Progress in brain research 2010; 182: 149-160
  • 34 Cohen S, Janicki-Deverts D, Miller GE. Psychological stress and disease. Jama 2007; 298: 1685-1687
  • 35 Rotvig DH, Bauer J, Eller NH. et al. Work-related stress and the hypothalamic-pituitary-adrenal axis. Ugeskrift for laeger 2019; 181: 7
  • 36 Cadegiani FA, Kater CE. Adrenal fatigue does not exist: a systematic review. BMC endocrine disorders 2016; 16: 48
  • 37 Luo H, Hu X, Liu X. et al. Hair cortisol level as a biomarker for altered hypothalamic-pituitary-adrenal activity in female adolescents with posttraumatic stress disorder after the 2008 Wenchuan earthquake. Biological psychiatry 2012; 72: 65-69
  • 38 Boscarino JA. Posttraumatic stress disorder, exposure to combat, and lower plasma cortisol among Vietnam veterans: findings and clinical implications. Journal of consulting and clinical psychology 1996; 64: 191-201
  • 39 Sharif K, Watad A, Coplan L. et al. The role of stress in the mosaic of autoimmunity: An overlooked association. Autoimmunity reviews 2018; 17: 967-983
  • 40 Glaser R, Kiecolt-Glaser JK. Stress-associated immune modulation: relevance to viral infections and chronic fatigue syndrome. The American journal of medicine 1998; 105: 35s-42s
  • 41 Glaser R, Sheridan J, Malarkey WB. et al. Chronic stress modulates the immune response to a pneumococcal pneumonia vaccine. Psychosomatic medicine 2000; 62: 804-807
  • 42 Kiecolt-Glaser JK, Glaser R, Gravenstein S. et al. Chronic stress alters the immune response to influenza virus vaccine in older adults. Proceedings of the National Academy of Sciences of the United States of America 1996; 93: 3043-3047
  • 43 Pant S, Ramaswamy B. Association of major stressors with elevated risk of breast cancer incidence or relapse. Drugs of today (Barcelona, Spain: 1998) 2009; 45: 115-126
  • 44 Song H, Fall K, Fang F. et al. Stress related disorders and subsequent risk of life threatening infections: population based sibling controlled cohort study. BMJ (Clinical research ed) 2019; 367: l5784
  • 45 Moynihan JA, Chapman BP, Klorman R. et al. Mindfulness-based stress reduction for older adults: effects on executive function, frontal alpha asymmetry and immune function. Neuropsychobiology 2013; 68: 34-43
  • 46 Miller GE, Murphy ML, Cashman R. et al. Greater inflammatory activity and blunted glucocorticoid signaling in monocytes of chronically stressed caregivers. Brain, behavior, and immunity 2014; 41: 191-199
  • 47 Kiecolt-Glaser JK, Preacher KJ, MacCallum RC. et al. Chronic stress and age-related increases in the proinflammatory cytokine IL-6. Proceedings of the National Academy of Sciences of the United States of America 2003; 100: 9090-9095
  • 48 Derry HM, Fagundes CP, Andridge R. et al. Lower subjective social status exaggerates interleukin-6 responses to a laboratory stressor. Psychoneuroendocrinology 2013; 38: 2676-2685
  • 49 Cole SW, Arevalo JM, Takahashi R. et al. Computational identification of gene-social environment interaction at the human IL6 locus. Proceedings of the National Academy of Sciences of the United States of America 2010; 107: 5681-5686
  • 50 Dang R, Guo YY, Zhang K. et al. Predictable chronic mild stress promotes recovery from LPS-induced depression. Molecular brain 2019; 12: 42
  • 51 Meyerowitz S, Jacox RF, Hess DW. Monozygotic twins discordant for rheumatoid arthritis: a genetic, clinical and psychological study of 8 sets. Arthritis and rheumatism 1968; 11: 1-21
  • 52 Henoch MJ, Batson JW, Baum J. Psychosocial factors in juvenile rheumatoid arthritis. Arthritis and rheumatism 1978; 21: 229-233
  • 53 Neufeld KM, Karunanayake CP, Maenz LY. et al. Stressful life events antedating chronic childhood arthritis. The Journal of rheumatology 2013; 40: 1756-1765
  • 54 Jin C, Jia H, Lanka P. et al. Dynamic brain connectivity is a better predictor of PTSD than static connectivity. Human brain mapping 2017; 38: 4479-4496
  • 55 Blechert J, Michael T, Grossman P. et al. Autonomic and respiratory characteristics of posttraumatic stress disorder and panic disorder. Psychosomatic medicine 2007; 69: 935-943
  • 56 Lee YC, Agnew-Blais J, Malspeis S. et al. Post-Traumatic Stress Disorder and Risk for Incident Rheumatoid Arthritis. Arthritis care &. research 2016; 68: 292-298
  • 57 Roberts AL, Malspeis S, Kubzansky LD. et al. Association of Trauma and Posttraumatic Stress Disorder With Incident Systemic Lupus Erythematosus in a Longitudinal Cohort of Women. Arthritis & rheumatology (Hoboken, NJ) 2017; 69: 2162-2169
  • 58 Boscarino JA. Posttraumatic stress disorder and physical illness: results from clinical and epidemiologic studies. Annals of the New York Academy of Sciences 2004; 1032: 141-153
  • 59 Song H, Fang F, Tomasson G. et al. Association of Stress-Related Disorders With Subsequent Autoimmune Disease. Jama 2018; 319: 2388-2400
  • 60 Härle P, Pongratz G, Albrecht J. et al. An early sympathetic nervous system influence exacerbates collagen-induced arthritis via CD4+CD25+ cells. Arthritis and rheumatism 2008; 58: 2347-2355
  • 61 Härle P, Möbius D, Carr DJ. et al. An opposing time-dependent immune-modulating effect of the sympathetic nervous system conferred by altering the cytokine profile in the local lymph nodes and spleen of mice with type II collagen-induced arthritis. Arthritis and rheumatism 2005; 52: 1305-1313
  • 62 Kohm AP, Sanders VM. Suppression of antigen-specific Th2 cell-dependent IgM and IgG1 production following norepinephrine depletion in vivo. Journal of immunology (Baltimore, Md : 1950) 1999; 162: 5299-5308
  • 63 Stefanski V, Hemschemeier SK, Schunke K. et al. Differential effect of severe and moderate social stress on blood immune and endocrine measures and susceptibility to collagen type II arthritis in male rats. Brain, behavior, and immunity 2013; 29: 156-165
  • 64 Rogers MP, Trentham DE, McCune WJ. et al. Effect of psychological stress on the induction of arthritis in rats. Arthritis and rheumatism 1980; 23: 1337-1342
  • 65 Rogers MP, Trentham DE, McCune WJ. et al. Abrogation of type II collagen-induced arthritis in rats by psychological stress. Transactions of the Association of American Physicians 1979; 92: 218-228
  • 66 Meyer-Hermann M, Figge MT, Straub RH. Mathematical modeling of the circadian rhythm of key neuroendocrine-immune system players in rheumatoid arthritis: a systems biology approach. Arthritis and rheumatism 2009; 60: 2585-2594
  • 67 Koopman FA, van Maanen MA, Vervoordeldonk MJ. et al. Balancing the autonomic nervous system to reduce inflammation in rheumatoid arthritis. Journal of internal medicine 2017; 282: 64-75
  • 68 Hilderman M, Bruchfeld A. The cholinergic anti-inflammatory pathway in chronic kidney disease-review and vagus nerve stimulation clinical pilot study. Nephrology, dialysis, transplantation: official publication of the European Dialysis and Transplant Association – European Renal Association 2020; 35: 1840-1852
  • 69 Guyot M, Simon T, Ceppo F. et al. Pancreatic nerve electrostimulation inhibits recent-onset autoimmune diabetes. Nature biotechnology 2019; 37: 1446-1451
  • 70 Drewes AM, Brock C, Rasmussen SE. et al. Short-term transcutaneous non-invasive vagus nerve stimulation may reduce disease activity and pro-inflammatory cytokines in rheumatoid arthritis: results of a pilot study. Scandinavian journal of rheumatology 2021; 50: 20-27
  • 71 DiRenzo D, Crespo-Bosque M, Gould N. et al. Systematic Review and Meta-analysis: Mindfulness-Based Interventions for Rheumatoid Arthritis. Current rheumatology reports 2018; 20: 75