Endoscopy 2021; 53(05): 535-554
DOI: 10.1055/a-1397-3005
Position Statement

Revising the European Society of Gastrointestinal Endoscopy (ESGE) research priorities: a research progress update

Pradeep Bhandari
 1   Department of Gastroenterology, Portsmouth University Hospital NHS Trust, Portsmouth, UK
,
 1   Department of Gastroenterology, Portsmouth University Hospital NHS Trust, Portsmouth, UK
,
 2   Gastroenterology Department, Portuguese Oncology Institute of Porto, Porto, Portugal
 3   Center for Research in Health Technologies and Information Systems (CINTESIS), Faculty of Medicine, Porto, Portugal
,
Pedro Pimentel-Nunes
 2   Gastroenterology Department, Portuguese Oncology Institute of Porto, Porto, Portugal
 3   Center for Research in Health Technologies and Information Systems (CINTESIS), Faculty of Medicine, Porto, Portugal
,
 4   Gastroenterology Department, Endoscopy Unit, Complejo Hospitalario de Navarra, Navarrabiomed-UPNA-IdiSNA, Pamplona, Spain
,
Mathieu Pioche
 5   Gastroenterology Division, Edouard Herriot Hospital, Lyon, France
,
Reena Sidhu
 6   Academic Department of Gastroenterology, Royal Hallamshire Hospital, Sheffield, UK
,
Cristiano Spada
 7   Digestive Endoscopy and Gastroenterology, Fondazione Poliambulanza, Brescia, Italy
 8   Università Cattolica del Sacro Cuore, Rome, Italy
,
Andrea Anderloni
 9   Gastroenterology and Digestive Endoscopy Unit, Ospedale dei Castelli, Ariccia, Rome, Italy
,
Alessandro Repici
10   Department of Biomedical Sciences, Humanitas University, Milan, Italy
11   Digestive Endoscopy Unit, IRCSS Humanitas Research Hospital, Milan, Italy
,
Rehan Haidry
12   Department of Gastroenterology, University College London Hospitals, London, UK
,
Marc Barthet
13   Department of Gastroenterology, Hôpital Nord, Assistance publique des hôpitaux de Marseille, Marseille, France
,
14   Department of Medicine I, University Medical Center Mainz, Mainz, Germany
15   GastroZentrum Lippe, Bad Salzuflen, Germany
,
Giulio Antonelli
 9   Gastroenterology and Digestive Endoscopy Unit, Ospedale dei Castelli, Ariccia, Rome, Italy
16   Nuovo Regina Margherita Hospital, Rome, Italy
17   Department of Translational and Precision Medicine, "Sapienza" University of Rome, Rome, Italy
,
Alberto Testoni
18   Vita Salute, San Raffaele Hospital, Milan, Italy
,
Thierry Ponchon
 5   Gastroenterology Division, Edouard Herriot Hospital, Lyon, France
,
Peter D. Siersema
19   Department of Gastroenterology and Hepatology, Radboud University Medical Center, Nijmegen, The Netherlands
,
20   Department of Medical and Surgical Sciences, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
,
Cesare Hassan
16   Nuovo Regina Margherita Hospital, Rome, Italy
,
Mario Dinis-Ribeiro
 2   Gastroenterology Department, Portuguese Oncology Institute of Porto, Porto, Portugal
 3   Center for Research in Health Technologies and Information Systems (CINTESIS), Faculty of Medicine, Porto, Portugal
› Institutsangaben

Abstract

Background One of the aims of the European Society of Gastrointestinal Endoscopy (ESGE) is to encourage high quality endoscopic research at a European level. In 2016, the ESGE research committee published a set of research priorities. As endoscopic research is flourishing, we aimed to review the literature and determine whether endoscopic research over the last 4 years had managed to address any of our previously published priorities.

Methods As the previously published priorities were grouped under seven different domains, a working party with at least two European experts was created for each domain to review all the priorities under that domain. A structured review form was developed to standardize the review process. The group conducted an extensive literature search relevant to each of the priorities and then graded the priorities into three categories: (1) no longer a priority (well-designed trial, incorporated in national/international guidelines or adopted in routine clinical practice); (2) remains a priority (i. e. the above criterion was not met); (3) redefine the existing priority (i. e. the priority was too vague with the research question not clearly defined).

Results The previous ESGE research priorities document published in 2016 had 26 research priorities under seven domains. Our review of these priorities has resulted in seven priorities being removed from the list, one priority being partially removed, another seven being redefined to make them more precise, with eleven priorities remaining unchanged. This is a reflection of a rapid surge in endoscopic research, resulting in 27 % of research questions having already been answered and another 27 % requiring redefinition.

Conclusions Our extensive review process has led to the removal of seven research priorities from the previous (2016) list, leaving 19 research priorities that have been redefined to make them more precise and relevant for researchers and funding bodies to target.

Appendix 1s



Publikationsverlauf

Artikel online veröffentlicht:
01. April 2021

© 2021. European Society of Gastrointestinal Endoscopy. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Rees CJ, Ngu WS, Regula J. et al. European Society of Gastrointestinal Endoscopy – Establishing the key unanswered research questions within gastrointestinal endoscopy. Endoscopy 2016; 48: 884-891
  • 2 Balshem H, Helfand M, Schünemann HJ. et al. GRADE guidelines: 3. Rating the quality of evidence. J Clin Epidemiol 2011; 64: 401-406
  • 3 Weusten B, Bisschops R, Coron E. et al. Endoscopic management of Barrett's esophagus: European Society of Gastrointestinal Endoscopy (ESGE) Position Statement. Endoscopy 2017; 49: 191-198
  • 4 Pimentel-Nunes P, Libânio D, Marcos-Pinto R. et al. Management of epithelial precancerous conditions and lesions in the stomach (MAPS II): European Society of Gastrointestinal Endoscopy (ESGE), European Helicobacter and Microbiota Study Group (EHMSG), European Society of Pathology (ESP), and Sociedade Port. Endoscopy 2019; 51: 365-388
  • 5 Hassan C, Antonelli G, Dumonceau JM. et al. Post-polypectomy colonoscopy surveillance: European Society of Gastrointestinal Endoscopy (ESGE) Guideline – Update 2020. Endoscopy 2020; 52: 687-700
  • 6 Hassan C, Wysocki PT, Fuccio L. et al. Endoscopic surveillance after surgical or endoscopic resection for colorectal cancer: European Society of Gastrointestinal Endoscopy (ESGE) and European Society of Digestive Oncology (ESDO) Guideline. Endoscopy 2019; 51: 266-277
  • 7 Atkin W, Wooldrage K, Brenner A. et al. Adenoma surveillance and colorectal cancer incidence: a retrospective, multicentre, cohort study. Lancet Oncol 2017; 18: 823-834
  • 8 Wieszczy P, Kaminski MF, Franczyk R. et al. Colorectal cancer incidence and mortality after removal of adenomas during screening colonoscopies. Gastroenterology 2020; 158: 875-883.e5
  • 9 He X, Hang D, Wu K. et al. Long-term risk of colorectal cancer after removal of conventional adenomas and serrated polyps. Gastroenterology 2020; 158: 852-861.e4
  • 10 Helsingen LM, Vandvik PO, Jodal HC. et al. Colorectal cancer screening with faecal immunochemical testing, sigmoidoscopy or colonoscopy: a clinical practice guideline. BMJ 2019; 367: 15515
  • 11 Jover R, Bretthauer M, Dekker E. et al. Rationale and design of the European Polyp Surveillance (EPoS) trials. Endoscopy 2016; 48: 571-578
  • 12 Spada C, McNamara D, Despott EJ. et al. Performance measures for small-bowel endoscopy: a European Society of Gastrointestinal Endoscopy (ESGE) Quality Improvement Initiative. Endoscopy 2019; 51: 574-598
  • 13 Valori R, Cortas G, de Lange T. et al. Performance measures for endoscopy services: a European Society of Gastrointestinal Endoscopy (ESGE) Quality Improvement Initiative. Endoscopy 2018; 50: 1186-1204
  • 14 Dekker E, Houwen BBSL, Puig I. et al. Curriculum for optical diagnosis training in Europe: European Society of Gastrointestinal Endoscopy (ESGE) Position Statement. Endoscopy 2020; 52: 899-923
  • 15 East JE, Vleugels JL, Roelandt P. et al. Advanced endoscopic imaging: European Society of Gastrointestinal Endoscopy (ESGE) Technology Review. Endoscopy 2016; 48: 1029-1045
  • 16 Bisschops R, East JE, Hassan C. et al. Advanced imaging for detection and differentiation of colorectal neoplasia: European Society of Gastrointestinal Endoscopy (ESGE) Guideline – Update 2019. Endoscopy 2019; 51: 1155-1179
  • 17 Domagk D, Oppong KW, Aabakken L. et al. Performance measures for ERCP and endoscopic ultrasound: a European Society of Gastrointestinal Endoscopy (ESGE) Quality Improvement Initiative. Endoscopy 2018; 50: 1116-1127
  • 18 Kaminski MF, Thomas-Gibson S, Bugajski M. et al. Performance measures for lower gastrointestinal endoscopy: a European Society of Gastrointestinal Endoscopy (ESGE) Quality Improvement Initiative. Endoscopy 2017; 49: 378-397
  • 19 Bisschops R, Areia M, Coron E. et al. Performance measures for upper gastrointestinal endoscopy: a European Society of Gastrointestinal Endoscopy (ESGE) Quality Improvement Initiative. Endoscopy 2016; 48: 843-864
  • 20 Bisschops R, Dekker E, East JE. et al. European Society of Gastrointestinal Endoscopy (ESGE) curricula development for postgraduate training in advanced endoscopic procedures: rationale and methodology. Endoscopy 2019; 51: 976-979
  • 21 Pimentel-Nunes P, Pioche M, Albéniz E. et al. Curriculum for endoscopic submucosal dissection training in Europe: European Society of Gastrointestinal Endoscopy (ESGE) Position Statement. Endoscopy 2019; 51: 980-992
  • 22 Sidhu R, Chetcuti Zammit S, Baltes P. et al. Curriculum for small-bowel capsule endoscopy and device-assisted enteroscopy training in Europe: European Society of Gastrointestinal Endoscopy (ESGE) Position Statement. Endoscopy 2020; 52: 669-686
  • 23 Khan R, Plahouras J, Johnston BC. et al. Virtual reality simulation training in endoscopy: a Cochrane review and meta-analysis. Endoscopy 2019; 51: 653-664
  • 24 Lahner E, Caruana P, D'Ambra G. et al. First endoscopic-histologic follow-up in patients with body-predominant atrophic gastritis: when should it be done?. Gastrointest Endosc 2001; 53: 443-448
  • 25 Banks M, Graham D, Jansen M. et al. British Society of Gastroenterology guidelines on the diagnosis and management of patients at risk of gastric adenocarcinoma. Gut 2019; 68: 1545-1575
  • 26 Qumseya B, Sultan S. et al. ASGE Standards Of Practice Committee. ASGE guideline on screening and surveillance of Barrettʼs esophagus. Gastrointest Endosc 2019; 90: 335-359.e2
  • 27 Shaheen NJ, Falk GW, Iyer PG. et al. American College of Gastroenterology. ACG Clinical Guideline: diagnosis and management of Barrettʼs esophagus. Am J Gastroenterol 2016; 111: 30-51
  • 28 Ding YE, Li Y, He XK. et al. Impact of Barrett's esophagus surveillance on the prognosis of esophageal adenocarcinoma: A meta-analysis. J Dig Dis 2018; 19: 737-744
  • 29 Codipilly DC, Chandar AK, Singh S. et al. The effect of endoscopic surveillance in patients with Barrett's esophagus: a systematic review and meta-analysis. Gastroenterology 2018; 154: 2068-2086.e5
  • 30 Vennalaganti PR, Kaul V, Wang KK. et al. Increased detection of Barrett's esophagus-associated neoplasia using wide-area trans-epithelial sampling: a multicenter, prospective, randomized trial. Gastrointest Endosc 2018; 87: 348-355
  • 31 Longcroft-Wheaton G, Fogg C, Chedgy F. et al. A feasibility trial of Acetic acid-targeted Biopsies versus nontargeted quadrantic biopsies during BArrettʼs surveillance: the ABBA trial. Endoscopy 2020; 52: 29-36
  • 32 Cotton CC, Haidry R, Thrift AP. et al. Development of evidence-based surveillance intervals after radiofrequency ablation of Barrettʼs esophagus. Gastroenterology 2018; 155: 316-326.e6
  • 33 Valanejad SM, Davis KA, Nisly SA. Outcomes associated with resuming direct oral anticoagulant therapy following admission for a gastrointestinal bleed. Ann Pharmacother 2020; 54: 975-980
  • 34 Sostres C, Marcén B, Laredo V. et al. Risk of rebleeding, vascular events and death after gastrointestinal bleeding in anticoagulant and/or antiplatelet users. Aliment Pharmacol Ther 2019; 50: 919-929
  • 35 Sengupta N, Marshall AL, Jones BA. et al. Rebleeding vs thromboembolism after hospitalization for gastrointestinal bleeding in patients on direct oral anticoagulants. Clin Gastroenterol Hepatol 2018; 16: 1893-1900.e2
  • 36 Oakland K, Desborough MJ, Murphy MF. et al. Rebleeding and mortality after lower gastrointestinal bleeding in patients taking antiplatelets or anticoagulants. Clin Gastroenterol Hepatol 2019; 17: 1276-1284.e3
  • 37 Nagata N, Sakurai T, Moriyasu S. et al. Impact of INR monitoring, reversal agent use, heparin bridging, and anticoagulant interruption on rebleeding and thromboembolism in acute gastrointestinal bleeding. PLoS One 2017; 12: e0183423
  • 38 Patel P, Nigam N, Sengupta N. Resumption of warfarin after hospitalization for lower gastrointestinal bleeding and mortality benefits. J Clin Gastroenterol 2018; 52: 545-550
  • 39 Kato M, Hayashi Y, Uema R. et al. Additional effect of magnifying narrow-band imaging on estimating the invasion depth of superficial esophageal cancer. JGH Open 2019; 4: 178-184
  • 40 Su HA, Hsiao SW, Hsu YC. et al. Superiority of NBI endoscopy to PET/CT scan in detecting esophageal cancer among head and neck cancer patients: a retrospective cohort analysis. BMC Cancer 2020; 20: 69
  • 41 Su Z, Wang L, Wei S. et al. Clinical diagnostic value of digestive endoscopic narrow-band imaging in early esophageal cancer. Oncol Lett 2019; 17: 5481-5486
  • 42 Dobashi A, Goda K, Furuhashi H. et al. Diagnostic efficacy of dual-focus endoscopy with narrow-band imaging using simplified dyad criteria for superficial esophageal squamous cell carcinoma. J Gastroenterol 2019; 54: 501-510
  • 43 Everson MA, Lovat LB, Graham DG. et al. Virtual chromoendoscopy by using optical enhancement improves the detection of Barrettʼs esophagus-associated neoplasia. Gastrointest Endosc 2019; 89: 247-256.e4
  • 44 Diao W, Huang X, Shen L. et al. Diagnostic ability of blue laser imaging combined with magnifying endoscopy for early esophageal cancer. Dig Liver Dis 2018; 50: 1035-1040
  • 45 Gai W, Jin XF, Du R. et al. Efficacy of narrow-band imaging in detecting early esophageal cancer and risk factors for its occurrence. Indian J Gastroenterol 2018; 37: 79-85
  • 46 Katada C, Tanabe S, Wada T. et al. Retrospective assessment of the diagnostic accuracy of the depth of invasion by narrow band imaging magnifying endoscopy in patients with superficial esophageal squamous cell carcinoma. J Gastrointest Cancer 2019; 50: 292-297
  • 47 Kandiah K, Chedgy FJQ, Subramaniam S. et al. International development and validation of a classification system for the identification of Barrettʼs neoplasia using acetic acid chromoendoscopy: the Portsmouth acetic acid classification (PREDICT). Gut 2018; 67: 2085-2092
  • 48 Kikuchi D, Iizuka T, Hoteya S. et al. Vascular density of superficial esophageal squamous cell carcinoma determined by direct observation of resected specimen using narrow band imaging with magnifying endoscopy. Dis Esophagus 2017; 30: 1-5
  • 49 Fujiyoshi T, Tajika M, Tanaka T. et al. Comparative evaluation of new and conventional classifications of magnifying endoscopy with narrow band imaging for invasion depth of superficial esophageal squamous cell carcinoma. Dis Esophagus 2017; 30: 1-8
  • 50 Lipman G, Bisschops R, Sehgal V. et al. Systematic assessment with I-SCAN magnification endoscopy and acetic acid improves dysplasia detection in patients with Barrett's esophagus. Endoscopy 2017; 49: 1219-1228
  • 51 Pennachi CMPS, Moura DTH, Amorim RBP. et al. Lugol's iodine chromoendoscopy versus narrow band image enhanced endoscopy for the detection of esophageal cancer in patients with stenosis secondary to caustic/corrosive agent ingestion. Arq Gastroenterol 2017; 54: 250-254
  • 52 Nogales O, Caballero-Marcos A, Clemente-Sánchez A. et al. Usefulness of non-magnifying narrow band imaging in EVIS EXERA III video systems and high-definition endoscopes to diagnose dysplasia in Barrett's esophagus using the Barrett International NBI Group (BING) classification. Dig Dis Sci 2017; 62: 2840-2846
  • 53 Tomie A, Dohi O, Yagi N. et al. Blue laser imaging-bright improves endoscopic recognition of superficial esophageal squamous cell carcinoma. Gastroenterol Res Pract 2016; 2016: 6140854
  • 54 Kato M, Goda K, Shimizu Y. et al. Image assessment of Barrettʼs esophagus using the simplified narrow band imaging classification. J Gastroenterol 2017; 52: 466-475
  • 55 Pascarenco OD, Coroş MF, Pascarenco G. et al. A preliminary feasibility study: Narrow-band imaging targeted versus standard white light endoscopy non-targeted biopsies in a surveillance Barrettʼs population. Dig Liver Dis 2016; 48: 1048-1053
  • 56 Kikuste I, Marques-Pereira R, Monteiro-Soares M. et al. Systematic review of the diagnosis of gastric premalignant conditions and neoplasia with high-resolution endoscopic technologies. Scand J Gastroenterol 2013; 48: 1108-1117
  • 57 Hu YY, Lian QW, Lin ZH. et al. Diagnostic performance of magnifying narrow-band imaging for early gastric cancer: A meta-analysis. World J Gastroenterol 2015; 21: 7884-7894
  • 58 Wang L, Huang W, Du J. et al. Diagnostic yield of the light blue crest sign in gastric intestinal metaplasia: a meta-analysis. PLoS One 2014; 9: e92874
  • 59 Dohi O, Yagi N, Naito Y. et al. Blue laser imaging-bright improves the real-time detection rate of early gastric cancer: a randomized controlled study. Gastrointest Endosc 2019; 89: 47-57
  • 60 Buxbaum JL, Hormozdi D, Dinis-Ribeiro M. et al. Narrow-band imaging versus white light versus mapping biopsy for gastric intestinal metaplasia: a prospective blinded trial. Gastrointest Endosc 2017; 86: 857-865
  • 61 Castro R, Esposito G, Libânio D. et al. A single vial is enough in the absence of endoscopic suspected intestinal metaplasia – less is more!. Scand J Gastroenterol 2019; 54: 673-677
  • 62 Esposito G, Pimentel-Nunes P, Angeletti S. et al. Endoscopic grading of gastric intestinal metaplasia (EGGIM): a multicenter validation study. Endoscopy 2019; 51: 515-521
  • 63 Pimentel-Nunes P, Libânio D, Lage J. et al. A multicenter prospective study of the real-time use of narrow-band imaging in the diagnosis of premalignant gastric conditions and lesions. Endoscopy 2016; 48: 723-730
  • 64 Nakanishi H, Doyama H, Ishikawa H. et al. Evaluation of an e-learning system for diagnosis of gastric lesions using magnifying narrow-band imaging: a multicenter randomized controlled study. Endoscopy 2017; 49: 957-967
  • 65 Ikehara H, Doyama H, Nakanishi H. et al. Analysis of factors related to poor outcome after e-learning training in endoscopic diagnosis of early gastric cancer using magnifying narrow-band imaging. Gastrointest Endosc 2019; 90: 440-447.e1
  • 66 Zhang Q, Chen ZY, Chen CD. et al. Training in early gastric cancer diagnosis improves the detection rate of early gastric cancer: an observational study in China. Medicine (Baltimore) 2015; 94: e384
  • 67 Chedgy FJQ, Kandiah K, Barr H. et al. Development and validation of a training module on the use of acetic acid for the detection of Barrettʼs neoplasia. Endoscopy 2017; 49: 121-129
  • 68 Bergman JJGHM, de Groof AJ, Pech O. et al. An interactive web-based educational tool improves detection and delineation of Barrettʼs esophagus-related neoplasia. Gastroenterology 2019; 156: 1299-1308.e3
  • 69 Rutter MD, East J, Rees CJ. et al. British Society of Gastroenterology/Association of Coloproctology of Great Britain and Ireland/Public Health England post-polypectomy and post-colorectal cancer resection surveillance guidelines. Gut 2020; 69: 201-223
  • 70 Atkin W, Brenner A, Martin J. et al. The clinical effectiveness of different surveillance strategies to prevent colorectal cancer in people with intermediate-grade colorectal adenomas: a retrospective cohort analysis, and psychological and economic evaluations. Health Technol Assess 2017; 21: 1-536
  • 71 Kaminski MF, Regula J, Kraszewska E. et al. Quality indicators for colonoscopy and the risk of interval cancer. NEJM 2010; 362: 1795-1803
  • 72 Kim JS, Kang SH, Moon HS. et al. Impact of bowel preparation quality on adenoma identification during colonoscopy and optimal timing of surveillance. Dig Dis Sci 2015; 60: 3092-3099
  • 73 Butterly LF, Nadel MR, Anderson JC. et al. Impact of colonoscopy bowel preparation quality on follow-up interval recommendations for average-risk patients with normal screening colonoscopies: data from the New Hampshire Colonoscopy Registry. J Clin Gastroenterol 2020; 54: 356-364
  • 74 Clark BT, Rustagi T, Laine L. What level of bowel prep quality requires early repeat colonoscopy: systematic review and meta-analysis of the impact of preparation quality on adenoma detection rate. Am J Gastroenterol 2014; 109: 1714-1724
  • 75 East JE, Atkin WS, Bateman AC. et al. British Society of Gastroenterology position statement on serrated polyps in the colon and rectum. Gut 2017; 66: 1181-1196
  • 76 Pommergaard HC, Burcharth J, Rosenberg J. et al. Advanced age is a risk factor for proximal adenoma recurrence following colonoscopy and polypectomy. Br J Surg 2016; 103: e100-e105
  • 77 Hamdani U, Naeem R, Haider F. et al. Risk factors for colonoscopic perforation: a population-based study of 80118 cases. World J Gastroenterol 2013; 19: 3596-3601
  • 78 Ponugoti PL, Cummings OW, Rex DK. Risk of cancer in small and diminutive colorectal polyps. Dig Liver Dis 2017; 49: 34-37
  • 79 Stryker SJ, Wolff BG, Culp CE. et al. Natural history of untreated colonic polyps. Gastroenterology 1987; 93: 1009-1013
  • 80 Kahi CJ. Reviewing the evidence that polypectomy prevents cancer. Gastrointest Endosc Clin N Am 2019; 29: 577-585
  • 81 Kopylov U, Yung DE, Engel T. et al. Diagnostic yield of capsule endoscopy versus magnetic resonance enterography and small bowel contrast ultrasound in the evaluation of small bowel Crohnʼs disease: Systematic review and meta-analysis. Dig Liver Dis 2017; 49: 854-863
  • 82 Yung DE, Har-Noy O, Tham YS. et al. Capsule endoscopy, magnetic resonance enterography, and small bowel ultrasound for evaluation of postoperative recurrence in Crohn's disease: systematic review and meta-analysis. Inflamm Bowel Dis 2017; 24: 93-100
  • 83 Manguso N, Gangi A, Johnson J. et al. The role of pre-operative imaging and double balloon enteroscopy in the surgical management of small bowel neuroendocrine tumors: Is it necessary?. J Surg Oncol 2018; 117: 207-212
  • 84 Ye H, Chen C. Comparison of double-balloon endoscopy and multi-detector row computed tomography in diagnosis of small intestinal tumors. Zhejiang Da Xue Xue Bao Yi Xue Ban 2017; 46: 557-562
  • 85 Leighton JA, Helper DJ, Gralnek IM. et al. Comparing diagnostic yield of a novel pan-enteric video capsule endoscope with ileocolonoscopy in patients with active Crohn's disease: a feasibility study. Gastrointest Endosc 2017; 85: 196-205.e1
  • 86 Eliakim R, Spada C, Lapidus A. et al. Evaluation of a new pan-enteric video capsule endoscopy system in patients with suspected or established inflammatory bowel disease - feasibility study. Endosc Int Open 2018; 6: E1235-E1246
  • 87 Jiang X, Qian YY, Liu X. et al. Impact of magnetic steering on gastric transit time of a capsule endoscopy (with video). Gastrointest Endosc 2018; 88: 746-754
  • 88 Beyna T, Arvanitakis M, Schneider M. et al. Motorised spiral enteroscopy: first prospective clinical feasibility study. Gut 2021; 70: 261-267
  • 89 Zhang ZH, Qiu CH, Li Y. Different roles of capsule endoscopy and double-balloon enteroscopy in obscure small intestinal diseases. World J Gastroenterol 2015; 21: 7297-7304
  • 90 Hermans C, Stronkhorst A, Tjhie-Wensing A. et al. Double-balloon endoscopy in overt and occult small bowel bleeding: results, complications, and correlation with prior videocapsule endoscopy in a tertiary referral center. Clin Endosc 2017; 50: 69-75
  • 91 Maeda Y, Moribata K, Deguchi H. et al. Video capsule endoscopy as the initial examination for overt obscure gastrointestinal bleeding can efficiently identify patients who require double-balloon enteroscopy. BMC Gastroenterol 2015; 15: 132
  • 92 Kakiya Y, Shiba M, Okamoto J. et al. A comparison between capsule endoscopy and double balloon enteroscopy using propensity score-matching analysis in patients with previous obscure gastrointestinal bleeding. Scand J Gastroenterol 2017; 52: 306-311
  • 93 Brito HP, Ribeiro IB, de Moura DTH. et al. Video capsule endoscopy vs double-balloon enteroscopy in the diagnosis of small bowel bleeding: A systematic review and meta-analysis. World J Gastrointest Endosc 2018; 10: 400-421
  • 94 Teshima CW, Kuipers EJ, van Zanten SV. et al. Double balloon enteroscopy and capsule endoscopy for obscure gastrointestinal bleeding: an updated meta-analysis. J Gastroenterol Hepatol 2011; 26: 796-801
  • 95 Rondonotti E, Spada C, Adler S. et al. Small-bowel capsule endoscopy and device-assisted enteroscopy for diagnosis and treatment of small-bowel disorders: European Society of Gastrointestinal Endoscopy (ESGE) Technical Review. Endoscopy 2018; 50: 423-446
  • 96 Simi M, Gerboni G, Menciassi A. et al. Magnetic torsion spring mechanism for a wireless biopsy capsule. J Med Devices 2013; 7: 041009
  • 97 Yim S, Gultepe E, Gracias DH. et al. Biopsy using a magnetic capsule endoscope carrying, releasing, and retrieving untethered microgrippers. IEEE Trans Biomed Eng 2014; 61: 513-521
  • 98 Valdastri P, Quaglia C, Susilo E. et al. Wireless therapeutic endoscopic capsule: in vivo experiment. Endoscopy 2008; 40: 979-982
  • 99 Woods SP, Constandinou TG. Wireless capsule endoscope for targeted drug delivery: mechanics and design considerations. IEEE Trans Biomed Eng 2013; 60: 945-953
  • 100 Çolak B, Şakalak H, Çavuşoğlu H. et al. Novel capsules for potential theranostics of obscure gastrointestinal bleedings. Med Hypotheses 2016; 94: 99-102
  • 101 Ching HL, Hale MF, Sidhu R. et al. Magnetically assisted capsule endoscopy in suspected acute upper GI bleeding versus esophagogastroduodenoscopy in detecting focal lesions. Gastrointest Endosc 2019; 90: 430-439
  • 102 Hale MF, Rahman I, Drew K. et al. Magnetically steerable gastric capsule endoscopy is equivalent to flexible endoscopy in the detection of markers in an excised porcine stomach model: results of a randomized trial. Endoscopy 2015; 47: 650-653
  • 103 Zou WB, Hou XH, Xin L. et al. Magnetic-controlled capsule endoscopy vs. gastroscopy for gastric diseases: a two-center self-controlled comparative trial. Endoscopy 2015; 47: 525-528
  • 104 Liao Z, Hou X, Lin-Hu EQ. et al. Accuracy of magnetically controlled capsule endoscopy, compared with conventional gastroscopy, in detection of gastric diseases. Clin Gastroenterol Hepatol 2016; 14: 1266-1273.e1
  • 105 Stone J, Grover K, Bernstein CN. The use of capsule endoscopy for diagnosis of iron deficiency anemia: a retrospective analysis. J Clin Gastroenterol 2020; 54: 452-458
  • 106 Contaldo A, Losurdo G, Albano F. et al. The spectrum of small intestinal lesions in patients with unexplained iron deficiency anemia detected by video capsule endoscopy. Medicina (Kaunas) 2019; 55: 59
  • 107 Garrido DuránC, Iyo MiyashiroE, Páez CumpaC. et al. Rentabilidad de la cápsula endoscópica en mujeres premenopáusicas con anemia ferropénica [Diagnostic yield of video capsule endoscopy in premenopausal women with iron-deficiency anemia]. Gastroenterol Hepatol 2015; 38: 373-378
  • 108 Xavier S, Magalhães J, Rosa B. et al. Impact of small bowel capsule endoscopy in iron deficiency anemia: influence of patientʼsage on diagnostic yield. Arq Gastroenterol 2018; 55: 242-246
  • 109 Olano C, Pazos X, Avendaño K. et al. Diagnostic yield and predictive factors of findings in small-bowel capsule endoscopy in the setting of iron-deficiency anemia. Endosc Int Open 2018; 6: E688-E693
  • 110 Yung DE, Rondonotti E, Giannakou A. et al. Capsule endoscopy in young patients with iron deficiency anaemia and negative bidirectional gastrointestinal endoscopy. United European Gastroenterol J 2017; 5: 974-981
  • 111 Milano A, Balatsinou C, Filippone A. et al. A prospective evaluation of iron deficiency anemia in the GI endoscopy setting: role of standard endoscopy, videocapsule endoscopy, and CT-enteroclysis. Gastrointest Endosc 2011; 73: 1002-1008
  • 112 Limsrivilai J, Srisajjakul S, Pongprasobchai S. et al. A prospective blinded comparison of video capsule endoscopy versus computed tomography enterography in potential small bowel bleeding: clinical utility of computed tomography enterography. J Clin Gastroenterol 2017; 51: 611-618
  • 113 Kim SH, Keum B, Chun HJ. et al. Efficacy and implications of a 48-h cutoff for video capsule endoscopy application in overt obscure gastrointestinal bleeding. Endosc Int Open 2015; 3: E334-E338
  • 114 Gomes C, Pinho R, Rodrigues A. et al. Impact of the timing of capsule endoscopy in overt obscure gastrointestinal bleeding on yield and rebleeding rate - is sooner than 14 d advisable?. World J Gastrointest Endosc 2018; 10: 74-82
  • 115 Iio S, Oka S, Tanaka S. et al. Clinical utility of emergency capsule endoscopy for diagnosing the source and nature of ongoing overt obscure gastrointestinal bleeding. Gastroenterol Res Pract 2019; 2019: 5496242
  • 116 Segarajasingam DS, Hanley SC, Barkun AN. et al. Randomized controlled trial comparing outcomes of video capsule endoscopy with push enteroscopy in obscure gastrointestinal bleeding. Can J Gastroenterol Hepatol 2015; 29: 85-90
  • 117 Law R, Varayil JE, WongKeeSong LM. et al. Assessment of multi-modality evaluations of obscure gastrointestinal bleeding. World J Gastroenterol 2017; 23: 614-621
  • 118 Tseng CM, Lin IC, Chang CY. et al. Role of computed tomography angiography on the management of overt obscure gastrointestinal bleeding. PLoS One 2018; 13: e0193793
  • 119 Yung DE, Sykes C, Koulaouzidis A. The validity of suspected blood indicator software in capsule endoscopy: a systematic review and meta-analysis. Expert Rev Gastroenterol Hepatol 2017; 11: 43-51
  • 120 Arieira C, Monteiro S, Dias de Castro F. et al. Capsule endoscopy: Is the software TOP 100 a reliable tool in suspected small bowel bleeding?. Dig Liver Dis 2019; 51: 1661-1664
  • 121 Beg S, Wronska E, Araujo I. et al. Use of rapid reading software to reduce capsule endoscopy reading times while maintaining accuracy. Gastrointest Endosc 2020; 91: 1322-1327
  • 122 Tsuboi A, Oka S, Aoyama K. et al. Artificial intelligence using a convolutional neural network for automatic detection of small-bowel angioectasia in capsule endoscopy images. Dig Endosc 2020; 32: 382-390
  • 123 Leenhardt R, Vasseur P, Li C. et al. A neural network algorithm for detection of GI angiectasia during small-bowel capsule endoscopy. Gastrointest Endosc 2019; 89: 189-194
  • 124 Aoki T, Yamada A, Kato Y. et al. Automatic detection of blood content in capsule endoscopy images based on a deep convolutional neural network. J Gastroenterol Hepatol 2020; 35: 1196-1200
  • 125 Ding Z, Shi H, Zhang H. et al. Gastroenterologist-level identification of small-bowel diseases and normal variants by capsule endoscopy using a deep-learning model. Gastroenterology 2019; 157: 1044-1054.e5
  • 126 Fan S, Xu L, Fan Y. et al. Computer-aided detection of small intestinal ulcer and erosion in wireless capsule endoscopy images. Phys Med Biol 2018; 63: 165001
  • 127 Alaskar H, Hussain A, Al-Aseem N. et al. Application of convolutional neural networks for automated ulcer detection in wireless capsule endoscopy images. Sensors (Basel) 2019; 19: 1265
  • 128 Wang S, Xing Y, Zhang L. et al. Deep convolutional neural network for ulcer recognition in wireless capsule endoscopy: experimental feasibility and optimization. Comput Math Methods Med 2019; DOI: 10.1155/2019/7546215.
  • 129 Klang E, Barash Y, Margalit RY. et al. Deep learning algorithms for automated detection of Crohn's disease ulcers by video capsule endoscopy. Gastrointest Endosc 2020; 91: 606-613.e2
  • 130 Zhou T, Han G, Li BN. et al. Quantitative analysis of patients with celiac disease by video capsule endoscopy: A deep learning method. Comput Biol Med 2017; 85: 1-6
  • 131 Yuan Y, Meng MQ. Deep learning for polyp recognition in wireless capsule endoscopy images. Med Phys 2017; 44: 1379-1389
  • 132 Saito H, Aoki T, Aoyama K. et al. Automatic detection and classification of protruding lesions in wireless capsule endoscopy images based on a deep convolutional neural network. Gastrointest Endosc 2020; 92: 144-151.e1
  • 133 Testoni PA, Mariani A, Aabakken L. et al. Papillary cannulation and sphincterotomy techniques at ERCP: European Society of Gastrointestinal Endoscopy (ESGE) Clinical Guideline. Endoscopy 2016; 48: 657-683
  • 134 Skinner M, Popa D, Neumann H. et al. ERCP with the overtube-assisted enteroscopy technique: a systematic review. Endoscopy 2014; 46: 560-572
  • 135 Sahar N, La Selva D, Gluck M. et al. The ASGE grading system for ERCP can predict success and complication rates in a tertiary referral hospital. Surg Endosc 2019; 33: 448-453
  • 136 Inamdar S, Slattery E, Sejpal DV. et al. Systematic review and meta-analysis of single-balloon enteroscopy-assisted ERCP in patients with surgically altered GI anatomy. Gastrointest Endosc 2015; 82: 9-19
  • 137 Nakai Y, Kogure H, Yamada A. et al. Endoscopic management of bile duct stones in patients with surgically altered anatomy. Dig Endosc 2018; 30 (Suppl. 01) 67-74
  • 138 Park TY, Song TJ. Recent advances in endoscopic retrograde cholangiopancreatography in Billroth II gastrectomy patients: A systematic review. World J Gastroenterol 2019; 25: 3091-3107
  • 139 Tang Z, Yang Y, Yang Z. et al. Early precut sphincterotomy does not increase the risk of adverse events for patients with difficult biliary access: A systematic review of randomized clinical trials with meta-analysis and trial sequential analysis. Medicine (Baltimore) 2018; 97: e12213
  • 140 Chen J, Wan JH, Wu DY. et al. Assessing quality of precut sphincterotomy in patients with difficult biliary access: an updated meta-analysis of randomized controlled trials. J Clin Gastroenterol 2018; 52: 573-578
  • 141 Sundaralingam P, Masson P, Bourke MJ. Early precut sphincterotomy does not increase risk during endoscopic retrograde cholangiopancreatography in patients with difficult biliary access: a meta-analysis of randomized controlled trials. Clin Gastroenterol Hepatol 2015; 13: 1722-1729.e2
  • 142 Choudhary A, Winn J, Siddique S. et al. Effect of precut sphincterotomy on post-endoscopic retrograde cholangiopancreatography pancreatitis: a systematic review and meta-analysis. World J Gastroenterol 2014; 20: 4093-4101
  • 143 Dumonceau JM, Andriulli A, Elmunzer BJ. et al. Prophylaxis of post-ERCP pancreatitis: European Society of Gastrointestinal Endoscopy (ESGE) Guideline – updated June 2014. Endoscopy 2014; 46: 799-815
  • 144 Wan J, Ouyang Y, Yu C. et al. Comparison of EUS with MRCP in idiopathic acute pancreatitis: a systematic review and meta-analysis. Gastrointest Endosc 2018; 87: 1180-1188.e9
  • 145 Zerboni G, Signoretti M, Crippa S. et al. Capurso G. Systematic review and meta-analysis: Prevalence of incidentally detected pancreatic cystic lesions in asymptomatic individuals. Pancreatology 2019; 19: 2-9
  • 146 Vanella G, Arcidiacono PG, Capurso G. Chronic asymptomatic pancreatic hyperenzymemia (CAPH): Meta-analysis of pancreatic findings at second-level imaging. Pancreatology 2019; 19: 237-244
  • 147 Ashkar M, Gardner TB. Role of endoscopic ultrasound in pancreatic diseases: a systematic review. Minerva Gastroenterol Dietol 2014; 60: 227-245
  • 148 Shen Z, Munker S, Zhou B. et al. The accuracies of diagnosing pancreas divisum by magnetic resonance cholangiopancreatography and endoscopic ultrasound: a systematic review and meta-analysis. Sci Rep 2016; 6: 35389
  • 149 Kalva NR, Vanar V, Forcione D. et al. Efficacy and safety of lumen apposing self-expandable metal stents for EUS guided cholecystostomy: a meta-analysis and systematic review. Can J Gastroenterol Hepatol 2018; 2018: 7070961
  • 150 Luk SW, Irani S, Krishnamoorthi R. et al. Endoscopic ultrasound-guided gallbladder drainage versus percutaneous cholecystostomy for high risk surgical patients with acute cholecystitis: a systematic review and meta-analysis. Endoscopy 2019; 51: 722-732
  • 151 Fusaroli P, Napoleon B, Gincul R. et al. The clinical impact of ultrasound contrast agents in EUS: a systematic review according to the levels of evidence. Gastrointest Endosc 2016; 84: 587-596.e10
  • 152 Zhang B, Zhu F, Li P. et al. Endoscopic ultrasound elastography in the diagnosis of pancreatic masses: A meta-analysis. Pancreatology 2018; 18: 833-840
  • 153 Tse F, Yuan Y, Moayyedi P. et al. Double-guidewire technique in difficult biliary cannulation for the prevention of post-ERCP pancreatitis: a systematic review and meta-analysis. Endoscopy 2017; 49: 15-26
  • 154 Tian G, Bao H, Li J. et al. Systematic review and meta-analysis of diagnostic accuracy of endoscopic ultrasound (EUS)-guided fine-needle aspiration (FNA) using 22-gauge and 25-gauge needles for pancreatic masses. Med Sci Monit 2018; 24: 8333-8341
  • 155 Li DF, Yang MF, Chang X. et al. Endocut versus conventional blended electrosurgical current for endoscopic biliary sphincterotomy: a meta-analysis of complications. Dig Dis Sci 2019; 64: 2088-2094
  • 156 Coutinho LMA, Bernardo WM, Rocha RS. et al. Early endoscopic retrograde cholangiopancreatography versus conservative treatment in patients with acute biliary pancreatitis: systematic review and meta-analysis of randomized controlled trials. Pancreas 2018; 47: 444-453
  • 157 Jin Z, Wei Y, Tang X. et al. Single-operator peroral cholangioscope in treating difficult biliary stones: A systematic review and meta-analysis. Dig Endosc 2019; 31: 256-269
  • 158 Crockett S, Falck-Ytter Y, Wani S. et al. Acute pancreatitis guideline. Gastroenterology 2018; 154: 1102
  • 159 Jayaraj M, Mohan BP, Dhindsa BS. et al. Periampullary diverticula and ERCP outcomes: a systematic review and meta-analysis. Dig Dis Sci 2019; 64: 1364-1376
  • 160 ASGE Standards of Practice Committee. , Buxbaum JL, Abbas Fehmi SM. et al. ASGE guideline on the role of endoscopy in the evaluation and management of choledocholithiasis. Gastrointest Endosc 2019; 89: 1075-1105.e15
  • 161 Vege SS, Ziring B, Jain R. et al. American Gastroenterological Association Institute Guideline on the diagnosis and management of asymptomatic neoplastic pancreatic cysts. Gastroenterology 2015; 148: 819-822
  • 162 Tanaka M, Fernández-Del Castillo C, Kamisawa T. et al. Revisions of international consensus Fukuoka guidelines for the management of IPMN of the pancreas. Pancreatology 2017; 17: 738-753
  • 163 European Study Group on Cystic Tumours of the Pancreas. European evidence-based guidelines on pancreatic cystic neoplasms. Gut 2018; 67: 789-804
  • 164 Marchegiani G, Andrianello S, Borin A. et al. Systematic review, meta-analysis, and a high-volume center experience supporting the new role of mural nodules proposed by the updated 2017 international guidelines on IPMN of the pancreas. Surgery 2018; 163: 1272-1279
  • 165 van Huijgevoort NCM, Del Chiaro M, Wolfgang CL. et al. Diagnosis and management of pancreatic cystic neoplasms: current evidence and guidelines. Nat Rev Gastroenterol Hepatol 2019; 16: 676-689
  • 166 Dumonceau JM, Deprez PH, Jenssen C. et al. Indications, results, and clinical impact of endoscopic ultrasound (EUS)-guided sampling in gastroenterology: European Society of Gastrointestinal Endoscopy (ESGE) Clinical Guideline – Updated January 2017. Endoscopy 2017; 49: 695-714
  • 167 Carrara S, Di Leo M, Grizzi F. et al. EUS elastography (strain ratio) and fractal-based quantitative analysis for the diagnosis of solid pancreatic lesions. Gastrointest Endosc 2018; 87: 1464-1473
  • 168 Ignee A, Jenssen C, Arcidiacono PG. et al. Endoscopic ultrasound elastography of small solid pancreatic lesions: a multicenter study. Endoscopy 2018; 50: 1071-1079
  • 169 Dietrich CF, Sahai AV, D'Onofrio M. et al. Differential diagnosis of small solid pancreatic lesions. Gastrointest Endosc 2016; 84: 933-940
  • 170 Costache MI, Cazacu IM, Dietrich CF. et al. Clinical impact of strain histogram EUS elastography and contrast-enhanced EUS for the differential diagnosis of focal pancreatic masses: A prospective multicentric study. Endosc Ultrasound 2020; 9: 116-121
  • 171 Le Berre C, Sandborn WJ, Aridhi S. et al. Application of artificial intelligence to gastroenterology and hepatology. Gastroenterology 2020; 158: 76-94.e2
  • 172 Schlottmann F, Luckett DJ, Fine J. et al. Laparoscopic Heller myotomy versus peroral endoscopic myotomy (POEM) for achalasia: a systematic review and meta-analysis. Ann Surg 2018; 267: 451-460
  • 173 Werner YB, Hakanson B, Martinek J. et al. Endoscopic or surgical myotomy in patients with idiopathic achalasia. NEJM 2019; 381: 2219-2229
  • 174 Jacques J, Pagnon L, Hure F. et al. Peroral endoscopic pyloromyotomy is efficacious and safe for refractory gastroparesis: prospective trial with assessment of pyloric function. Endoscopy 2019; 51: 40-49
  • 175 Bernardot L, Roman S, Barret M. et al. Efficacy of per-oral endoscopic myotomy for the treatment of non-achalasia esophageal motor disorders. Surg Endosc 2020; 34: 5508-5515
  • 176 Hernández Mondragón OV, Solórzano Pineda MO, Blancas Valencia JM. Zenker's diverticulum: Submucosal tunneling endoscopic septum division (Z-POEM). Dig Endosc 2018; 30: 124
  • 177 Shoji Y, Takeuchi H, Goto O. et al. Optimal minimally invasive surgical procedure for gastric submucosal tumors. Gastric Cancer 2018; 21: 508-515
  • 178 Goto O, Takeuchi H, Sasaki M. et al. Laparoscopy-assisted endoscopic full-thickness resection of gastric subepithelial tumors using a nonexposure technique. Endoscopy 2016; 48: 1010-1015
  • 179 Hedjoudje A, Abu Dayyeh BK, Cheskin LJ. et al. Efficacy and safety of endoscopic sleeve gastroplasty: a systematic review and meta-analysis. Clin Gastroenterol Hepatol 2020; 18: 1043-1053.e4
  • 180 Fiorillo C, Quero G, Vix M. et al. 6-month gastrointestinal quality of life (QoL) results after endoscopic sleeve gastroplasty and laparoscopic sleeve gastrectomy: a propensity score analysis. Obes Surg 2020; 30: 1944-1951
  • 181 Fayad L, Adam A, Schweitzer M. et al. Endoscopic sleeve gastroplasty versus laparoscopic sleeve gastrectomy: a case-matched study. Gastrointest Endosc 2019; 89: 782-788
  • 182 Lorenzo D, Guilbaud T, Gonzalez JM. et al. Endoscopic treatment of fistulas after sleeve gastrectomy: a comparison of internal drainage versus closure. Gastrointest Endosc 2018; 87: 429-437
  • 183 Bège T, Emungania O, Vitton V. et al. An endoscopic strategy for management of anastomotic complications from bariatric surgery: a prospective study. Gastrointest Endosc 2011; 73: 238-244
  • 184 Bouchard S, Eisendrath P, Toussaint E. et al. Trans-fistulary endoscopic drainage for post-bariatric abdominal collections communicating with the upper gastrointestinal tract. Endoscopy 2016; 48: 809-816
  • 185 van Baar ACG, Holleman F, Crenier L. et al. Endoscopic duodenal mucosal resurfacing for the treatment of type 2 diabetes mellitus: one year results from the first international, open-label, prospective, multicentre study. Gut 2020; 69: 295-303
  • 186 Gupta S, Miskovic D, Bhandari P. et al. A novel method for determining the difficulty of colonoscopic polypectomy. Frontline Gastroenterol 2013; 4: 244-248
  • 187 Sansone S, Ragunath K, Bianco MA. et al. Clinical utility of the SMSA grading tool for the management of colonic neoplastic lesions. Dig Liver Dis 2017; 49: 518-522
  • 188 Barosa R, Mohammed N, Rembacken B. Risk stratification of colorectal polyps for predicting residual or recurring adenoma using the Size/Morphology/Site/Access score. United European Gastroenterol J 2018; 6: 630-638
  • 189 Sidhu M, Tate DJ, Desomer L. et al. The size, morphology, site, and access score predicts critical outcomes of endoscopic mucosal resection in the colon. Endoscopy 2018; 50: 684-692
  • 190 Currie AC, Merriman H, Nadia Shah Gilani S. et al. Validation of the size morphology site access score in endoscopic mucosal resection of large polyps in a district general hospital. Ann R Coll Surg Engl 2019; 101: 558-562
  • 191 Tate DJ, Desomer L, Klein A. et al. Adenoma recurrence after piecemeal colonic EMR is predictable: the Sydney EMR recurrence tool. Gastrointest Endosc 2017; 85: 647-656.e6
  • 192 Silva JC, Pinho R, Fernades C. et al. Prediction of adenoma recurrence after piecemeal endoscopic mucosal resection: interobserver agreement and utilization of the Sydney EMR recurrence tool. Scand J Gastroenterol 2020; 55: 492-496
  • 193 Albéniz E, Fraile M, Ibáñez B. et al. A scoring system to determine risk of delayed bleeding after endoscopic mucosal resection of large colorectal lesions. Clin Gastroenterol Hepatol 2016; 14: 1140-1147
  • 194 Bahin FF, Rasouli KN, Byth K. et al. Prediction of clinically significant bleeding following wide-field endoscopic resection of large sessile and laterally spreading colorectal lesions: a clinical risk score. Am J Gastroenterol 2016; 111: 1115-1122
  • 195 Albéniz E, Gimeno-García AZ, Fraile M. et al. Clinical validation of risk scoring systems to predict risk of delayed bleeding after EMR of large colorectal lesions. Gastrointest Endosc 2020; 91: 868-878.e3
  • 196 Burgess NG, Bassan MS, McLeod D. et al. Deep mural injury and perforation after colonic endoscopic mucosal resection: a new classification and analysis of risk factors. Gut 2017; 66: 1779-1789
  • 197 Hong SN, Byeon JS, Lee BI. et al. Prediction model and risk score for perforation in patients undergoing colorectal endoscopic submucosal dissection. Gastrointest Endosc 2016; 84: 98-108
  • 198 Seo M, Song EM, Cho JW. et al. A risk-scoring model for the prediction of delayed bleeding after colorectal endoscopic submucosal dissection. Gastrointest Endosc 2019; 89: 990-998.e2
  • 199 Matsumoto S, Uehara T, Mashima H. Construction of a preoperative scoring system to predict the difficulty level of colorectal endoscopic submucosal dissection. PLoS One 2019; 14: e0219096