Synlett
DOI: 10.1055/a-1457-2399
cluster
Modern Nickel-Catalyzed Reactions

Nickel-Catalyzed Photodehalogenation of Aryl Bromides

Bradley Higginson
a  Institute of Chemical Research of Catalonia (ICIQ), Av. Paisos Catalans 16, 43007, Tarragona, Spain
b  Departament de Química Analítica i Química Orgànica, Universitat Rovira i Virgili, c/Marcel·lí Domingo, 1, 43007 Tarragona, Spain
,
Jesus Sanjosé-Orduna
a  Institute of Chemical Research of Catalonia (ICIQ), Av. Paisos Catalans 16, 43007, Tarragona, Spain
,
Yiting Gu
a  Institute of Chemical Research of Catalonia (ICIQ), Av. Paisos Catalans 16, 43007, Tarragona, Spain
,
Ruben Martin
a  Institute of Chemical Research of Catalonia (ICIQ), Av. Paisos Catalans 16, 43007, Tarragona, Spain
c  ICREA, Passeig Lluís Companys, 23, 08010 Barcelona, Spain
› Institutsangaben
We thank Institut Català d’Investigació Química (ICIQ) and the Fondo Europeo de Desarrollo Regional (FEDER/MCI, AEI/PGC2018-096839-B-I00) for financial support. B. H. thanks ‘La Caixa’ Foundation (ID 100010434 and LCF/BQ/DI18/11660031) for a predoctoral fellowship.


Abstract

Herein, we describe a Ni-catalyzed photodehalogenation of aryl bromides under visible-light irradiation that utilizes tetrahydrofuran as hydrogen source. The protocol obviates the need for exogeneous amine reductants or photocatalysts and is characterized by its simplicity and broad scope, including challenging substrate combinations

Supporting Information



Publikationsverlauf

Eingereicht: 23. Februar 2021

Angenommen nach Revision: 21. März 2021

Publikationsdatum:
21. März 2021 (online)

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

  • 1 Alonso F, Beletskaya IP, Yus M. Chem. Rev. 2002; 102: 4009
    • 4a Boukherroub R, Chatgilialoglu C, Manuel G. Organometallics 1996; 15: 1508
    • 4b Logan ME, Oinen ME. Organometallics 2006; 25: 1052
    • 4c Sajiki H, Kume A, Hattori K, Hirota K. Tetrahedron Lett. 2002; 43: 7247
    • 4d Sajiki H, Kume A, Hattori K, Hirota K. Tetrahedron Lett. 2002; 43: 7247
    • 4e Cannon KA, Geuther ME, Kelly CK, Lin S, MacArthur AH. R. Organometallics 2011; 30: 4067
    • 4f Cannon KA, Geuther ME, Kelly CK, Lin S, MacArthur AH. R. Organometallics 2011; 30: 4067
    • 4g Haibach MC, Stoltz BM, Grubbs RH. Angew. Chem. Int. Ed. 2017; 56: 15123
    • 4h You T, Wang Z, Chen J, Xia Y. J. Org. Chem. 2017; 82: 1340
    • 4i Yang J, Brookhart M. J. Am. Chem. Soc. 2007; 129: 12656
    • 4j Fujita K, Owaki M, Yamaguchi R. Chem. Commun. 2002; 2964
    • 5a Ke J, Wang H, Zhou L, Mou CZhang J, Pan Y, Chi RY. Chem. Eur. J. 2019; 25: 6911
    • 5b Mitsudo K, Okada T, Shimohara S, Mandai H, Suga S. Electrochemistry 2013; 81: 362
    • 7a Cao D, Yan C, Zhou P, Zeng H, Li C.-J. Chem. Commun. 2019; 55: 767
    • 7b Fukuyama T, Fujita Y, Miyoshi H, Ryu I, Kao S.-C, Wu Y.-K. Chem. Commun. 2018; 54: 5582
    • 7c Ding T.-H, Qu J.-P, Kang Y.-B. Org. Lett. 2020; 22: 3084
    • 8a Michelet B, Deldaele C, Kajouj S, Moucheron C, Evano G. Org. Lett. 2017; 19: 3576
    • 8b Li K, Wan Q, Yang C, Chang X.-Y, Low K.-H, Che C.-M. Angew. Chem. Int. Ed. 2018; 57: 14129
    • 8c Häring M, Pérez-Ruiz R, von Wangelin A, Díaz DD. Chem. Commun. 2015; 51: 16848
    • 8d Revol G, McCallum T, Morin M, Gagosz F, Barriault L. Angew. Chem. Int. Ed. 2013; 52: 13342
    • 9a Discekici EH, Treat NJ, Poelma SO, Mattson KM, Hudson ZM, Luo Y, Hawker CJ, de Alaniz JR. Chem. Commun. 2015; 51: 11705
    • 9b Ghosh I, Ghosh T, Bardagi JI, König B. Science 2014; 346: 725
    • 9c Bardagi JI, Ghosh I, Schmalzbauer M, Ghosh T, König B. Eur. J. Org. Chem. 2018; 34
    • 9d Graml A, Neveselý T, Jan Kutta R, Cibulka R, König B. Nat. Commun. 2020; 11: 1
    • 9e MacKenzie IA, Wang L, Onuska NP. R, Williams OF, Begam K, Moran AM, Dunietz BD, Nicewicz DA. Nature 2020; 580: 76
  • 10 Zhou Z.-Z, Zhao J.-H, Gou X.-Y, Chen X.-M, Liang Y.-M. Org. Chem. Front. 2019; 6: 1649
  • 11 Representative Procedure An oven-dried Schlenk tube containing a stirrer bar was charged with Na2CO3 (0.3 mmol, 31.8 mg, 1.5 equiv) and NiI2 (0.02 mmol, 6.1 mg, 10 mol%). The Schlenk tube was transferred into a nitrogen-filled glovebox where dcyb (0.022 mmol, 9.9 mg, 11 mol%), CsI (0.04 mmol, 10.4 mg, 20 mol%) were added. The Schlenk tube was sealed and removed from the glovebox, 4-bromoanisole (0.2 mmol, 37.4 mg, 1 equiv) and anhydrous THF (0.2 M, 1 mL) was added using Schlenk line techniques. The mixture was stirred for 15 min. Then, it was placed in a preheated reaction vessel at 35 °C and stirred for 72 h under blue-light irradiation. The mixture was quenched with 1 M HCl (2 mL) and extracted with EtOAc, 0.5 cm3 of silica gel were added to the round-bottom flask and evaporated on a rotary evaporator set at 40 °C and 100 mbar. The silica was then subjected to column chromatography, affording anisole (19.4 mg, 90% yield). 1H NMR (400 MHz, CDCl3): δ = 7.36–7.24 (m, 2 H), 7.01–6.88 (m, 3 H), 3.82 (s, 3 H). 13C NMR (101 MHz, CDCl3): δ = 159.5, 129.4, 120.6, 113.9, 55.1.
    • 12a Zhou Z.-Z, Zhao J.-H, Gou X.-Y, Chen X.-M, Liang Y.-M. Org. Chem. Front. 2019; 6: 1649
    • 12b Janni M, Peruncheralathan S. Org. Biomol. Chem. 2016; 14: 3091
    • 12c Miura Y, Oka H, Yamano E, Morita M. J. Org. Chem. 1997; 62: 1188
    • 12d Lang Y, Peng X, Li C.-J, Zeng H. Green Chem. 2020; 22: 6323
    • 12e Dong Y, Su Y, Du L, Wang R, Zhang L, Zhao D, Xie W. ACS Nano 2019; 13: 10754
    • 12f Loh YY, Nagao K, Hoover AJ, Hesk D, Rivera NR, Colletti SL, Davies IW, Macmillan DW. C. Science 2017; 358: 1182
    • 12g Wang X, Zhu M.-H, Schuman DP, Zhong D, Wang W.-Y, Wu L.-Y, Liu W, Stoltz BM, Liu W.-B. J. Am. Chem. Soc. 2018; 140: 10970
    • 12h Mutsumi T, Iwata H, Maruhashi K, Monguchi Y, Sajiki H. Tetrahedron 2011; 67: 1158