Synlett 2021; 32(09): 930-934
DOI: 10.1055/a-1468-5725
letter

Brønsted Acid Catalyzed Cyclization of Inert N-Substituted Pyrroles to Benzo[f]pyrrolo[1,2-a][1,4]diazepines

Zeng Gao
a   State Key Laboratory for Oxo Synthesis and Selective Oxidation, Center for Excellence in Molecular Synthesis, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou 730000, P. R. of China
b   University of Chinese Academy of Sciences, Beijing 100049, P. R. of China
,
a   State Key Laboratory for Oxo Synthesis and Selective Oxidation, Center for Excellence in Molecular Synthesis, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou 730000, P. R. of China
,
Huameng Yang
a   State Key Laboratory for Oxo Synthesis and Selective Oxidation, Center for Excellence in Molecular Synthesis, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou 730000, P. R. of China
,
Jinlong Zhang
a   State Key Laboratory for Oxo Synthesis and Selective Oxidation, Center for Excellence in Molecular Synthesis, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou 730000, P. R. of China
,
Gaoxi Jiang
a   State Key Laboratory for Oxo Synthesis and Selective Oxidation, Center for Excellence in Molecular Synthesis, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou 730000, P. R. of China
› Institutsangaben
Financial support from the National Natural Science Foundation of China (21602231) and the Natural Science Foundation of Jiangsu Province (BK20191197 and BK20181373) is gratefully acknowledged.


Abstract

Two approaches involving intramolecular and intermolecular cyclization, respectively, have been developed for the direct and practical construction of a series of important benzo[f]pyrrolo[1,2-a][1,4]azepines by using Brønsted acid catalysts. Upon catalysis by TsOH, the intramolecular dehydroxylation/ring closure of 3-hydroxy-2-[2-(1H-pyrrol-1-yl)benzyl]isoindolin-1-ones provided various racemic benzo[f]pyrrolo[1,2-a][1,4]azepines in high yields. Furthermore, enantioenriched benzo[f]pyrrolo[1,2-a][1,4]azepines were also obtained by chiral phosphoric acid catalyzed intermolecular addition of [2-(1H-pyrrol-1-yl)phenyl]methanamines to 2-formylbenzoates under mild conditions.

Supporting Information



Publikationsverlauf

Eingereicht: 14. Dezember 2020

Angenommen nach Revision: 27. März 2021

Accepted Manuscript online:
27. März 2021

Artikel online veröffentlicht:
16. April 2021

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

    • 1a Snow GA. Bacteriol. Rev. 1970; 34: 99
    • 1b Lin W.-H, Ye Y, Xu R.-S. J. Nat. Prod. 1992; 55: 571
    • 1c Thurston DE, Bose DS. Chem. Rev. 1994; 94: 433
    • 1d Murakami S, Takemoto T, Shimizu Z. J. Pharm. Soc. Jpn. 1953; 73: 1026
  • 2 Hall IH, Murthy AR. K, Wyrick SD. J. Pharm. Sci. 1986; 75: 622
    • 3a Page PC. B, Bartlett CJ, Chan Y, Day D, Parker P, Buckley BR, Rassias GA, Slawin AM. Z, Allin SM, Lacour J, Pinto A. J. Org. Chem. 2012; 77: 6128
    • 3b Kano T, Sugimoto H, Maruoka K. J. Am. Chem. Soc. 2011; 133: 18130
    • 3c Page PC. B, Pearce CA, Chan Y, Parker P, Buckley BR, Rassias GA, Elsegood MR. J. J. Org. Chem. 2015; 80: 8036
  • 4 Saudan LA, Bernardinelli G, Kündig EP. Synlett 2000; 483
    • 5a Willoughby CA, Buchwald SL. J. Am. Chem. Soc. 1994; 116: 8952
    • 5b Chang M, Li W, Hou G, Zhang X. Adv. Synth. Catal. 2010; 352: 3121
    • 5c Zhang Y, Kong D, Wang R, Hou G. Org. Biomol. Chem. 2017; 15: 3006
    • 5d Guo C, Sun D.-W, Yang S, Mao S.-J, Xu X.-H, Zhu S.-F, Zhou Q.-L. J. Am. Chem. Soc. 2015; 137: 90
    • 5e Chen F, Ding Z, Qin J, Wang T, He Y, Fan Q.-H. Org. Lett. 2011; 13: 4348
    • 5f Gao K, Yu C.-B, Li W, Zhou Y.-G, Zhang X. Chem. Commun. 2011; 47: 7845
    • 5g Gao K, Wu B, Yu C.-B, Chen Q.-A, Ye Z.-S, Zhou Y.-G. Org. Lett. 2012; 14: 3890
    • 5h Guo R.-N, Gao K, Ye Z.-S, Shi L, Li Y, Zhou Y.-G. Pure Appl. Chem. 2013; 85: 843
    • 5i Shen H.-Q, Gao X, Liu C, Hu S.-B, Zhou Y.-G. Org. Lett. 2016; 18: 5920
    • 5j Balakrishna B, Bauzá A, Frontera A, Vidal-Ferran A. Chem. Eur. J. 2016; 22: 10607
    • 5k Wang J. Tetrahedron Lett. 2013; 54: 5956
    • 5l Li P, Huang Y, Hu X, Dong X.-Q, Zhang X. Org. Lett. 2017; 19: 3855
    • 5m Rueping M, Merino E, Koenigs RM. Adv. Synth. Catal. 2010; 352: 2629
    • 5n Zawodny W, Montgomery SL, Marshall JR, Finnigan JD, Turner NJ, Clayden J. J. Am. Chem. Soc. 2018; 140: 17872
    • 5o Ding Z.-Y, Chen F, Qin J, He Y.-M, Fan Q.-H. Angew. Chem. Int. Ed. 2012; 51: 5706
    • 5p Yang Z, Ding Z, Chen F, He Y.-M, Yang N, Fan Q.-H. Eur. J. Org. Chem. 2017; 1973
    • 5q Miao T, Ma B, Ding Z, Liu Y, He Y.-M, Fan Q.-H. Asian J. Org. Chem. 2017; 1219
    • 5r Liu Y, Chen F, He Y.-M, Li C, Fan Q.-H. Org. Biomol. Chem. 2019; 17: 5099
    • 6a Cheetham CA, Massey RS, Pira SL, Pritchard RG, Wallace TW. Org. Biomol. Chem. 2011; 9: 1831
    • 6b France SP, Aleku GA, Sharma M, Mangas-Sanchez J, Howard RM, Steflik J, Kumar R, Adams RW, Slabu I, Crook R, Grogan G, Wallace TW, Turner NJ. Angew. Chem. Int. Ed. 2017; 56: 15589
    • 6c Liu J, Yang X, Zuo Z, Nan J, Wang Y, Luan X. Org. Lett. 2018; 20: 244
    • 6d Yang T, Guo X, Yin Q, Zhang X. Chem. Sci. 2019; 10: 2473
  • 7 Postikova S, Sabbah M, Wightman D, Nguyen IT, Sanselme M, Besson T, Brière JF, Oudeyer S, Levacher V. J. Org. Chem. 2013; 78: 8191
    • 8a Reinecke MG, Johnson HW, Sebastian JF. J. Am. Chem. Soc. 1963; 85: 2859
    • 8b Belen’kii LI. Heterocycles 1994; 37: 2029
    • 9a Joule JA, Mills K, Smith GF. Heterocyclic Chemistry, 3rd ed. Chapman and Hall; London: 1995: 231
    • 9b Schofield K. Hetero-Aromatic Nitrogen Compounds: Pyrroles and Pyridines. Plenum Press; New York: 1967
    • 9c Jorapur YR, Lee C.-H, Chi DY. Org. Lett. 2005; 7: 1231

      For asymmetric addition of unprotected pyrroles, see:
    • 10a Trost BM, Müller C. J. Am. Chem. Soc. 2008; 130: 2438
    • 10b Sheng Y.-F, Gu Q, Zhang A.-J, You S.-L. J. Org. Chem. 2009; 74: 6899
    • 10c Sheng Y.-F, Li G.-Q, Kang Q, Zhang A.-J, You S.-L. Chem. Eur. J. 2009; 15: 3351
    • 10d Hong L, Sun W, Liu C, Wang L, Wong K, Wang R. Chem. Eur. J. 2009; 15: 11105
    • 10e Yokoyama N, Arai T. Chem. Commun. 2009; 3285
    • 10f Hong L, Liu C, Sun W, Wang L, Wong K, Wang R. Org. Lett. 2009; 11: 2177
    • 10g Blay G, Fernández I, Monleón A, Pedro JR, Vila C. Org. Lett. 2009; 11: 441
    • 10h Singh PK, Singh VK. Org. Lett. 2010; 12: 80
    • 10i Blay G, Fernández I, Muñoz MC, Pedro JR, Recuenco A, Vila C. J. Org. Chem. 2011; 76: 6286
    • 10j Zhang K.-F, Nie J, Guo R, Zheng Y, Ma J.-A. Adv. Synth. Catal. 2013; 355: 3497 ; corrigendum: Adv. Synth. Catal. 2014, 356, 2133
    • 10k Hua Y.-Z, Han X.-W, Yang X.-C, Song X, Wang M.-C, Chang J.-B. J. Org. Chem. 2014; 79: 11690
    • 10l Li C, Guo F, Xu K, Zhang S, Hu Y, Zha Z, Wang Z. Org. Lett. 2014; 16: 3192
    • 10m Wu K, Zhuo M.-H, Sha D, Fan Y.-S, An D, Jiang Y.-J, Zhang S. Chem. Commun. 2015; 51: 8054
    • 10n Hu Y, Li Y, Zhang S, Li C, Li L, Zha Z, Wang Z. Org. Lett. 2015; 17: 4018
    • 10o Nakamura S, Matsuda N, Ohara M. Chem. Eur. J. 2016; 22: 9478
    • 10p Lou H, Wang Y, Jin E, Lin X. J. Org. Chem. 2016; 81: 2019
    • 10q Sun J, Hu Y, Li Y, Zhang S, Zha Z, Wang Z. J. Org. Chem. 2017; 82: 5102
    • 10r Gui Y, Li Y, Sun J, Zha Z, Wang Z. J. Org. Chem. 2018; 83: 7491
    • 11a Paras NA, MacMillan DW. C. J. Am. Chem. Soc. 2001; 123: 4370
    • 11b Li G, Rowland GB, Rowland EB, Antilla JC. Org. Lett. 2007; 9: 4065
    • 11c Cao C.-L, Zhou Y.-Y, Sun X.-L, Tang Y. Tetrahedron 2008; 64: 10676
    • 11d Sibi MP, Coulomb J, Stanley LM. Angew. Chem. Int. Ed. 2008; 47: 9913
    • 11e Huang Y, Tokunaga E, Suzuki S, Shiro M, Shibata N. Org. Lett. 2010; 12: 1136 ; corrigendum: Org. Lett. 2010, 12, 3570
    • 11f He Y, Lin M, Li Z, Liang X, Li G, Antilla JC. Org. Lett. 2011; 13: 4490
    • 11g You Y, Cui B.-D, Zhou M.-Q, Zuo J, Zhao J.-Q, Xu X.-Y, Zhang X.-M, Yuan W.-C. J. Org. Chem. 2015; 80: 5951
    • 11h Majer J, Kwiatkowski P, Jurczak J. Org. Lett. 2011; 13: 5944
    • 11i Gutierrez EG, Wong CJ, Sahin AH, Franz AK. Org. Lett. 2011; 13: 5754
    • 11j Cai Y, Tang Y, Atodiresei I, Rueping M. Angew. Chem. Int. Ed. 2016; 55: 14126
    • 11k Li H, Tong R, Sun J. Angew. Chem. Int. Ed. 2016; 55: 15125
    • 11l Gade AB, Patil NT. Synlett 2017; 28: 1096
    • 11m Gao Z, Zhang J, Yang H, Jiang G. J. Org. Chem. 2018; 83: 11407
    • 11n Wei Z, Zhang J, Yang H, Jiang G. Adv. Synth. Catal. 2019; 361: 3694
    • 11o Wei Z, Zhang J, Yang H, Jiang G. Org. Lett. 2019; 21: 2790
    • 11p Gao Z, Wang F, Qian J, Yang H, Xia C, Zhang J, Jiang G. Org. Lett. 2021; 23: 1181
  • 12 9H-Isoindolo[1,2-c]pyrrolo[1,2-a][1,4]benzodiazepin-11(15bH)-ones 2aq; General Procedure (Intramolecular Reaction) The appropriate isoindolone 1 (0.2 mmol, 1.0 equiv) and TsOH (1 mol%) were stirred in CH2Cl2 (1 mL) at r.t. When the reaction was complete, the solvent was removed and the crude mixture was purified by flash column chromatography (silica gel, hexane–EtOAc). 9H-Isoindolo[1,2-c]pyrrolo[1,2-a][1,4]benzodiazepin-11(15bH)-ones 2a, 2qt; General Procedure (Intermolecular Reaction) The appropriate amine 3 (0.1 mmol, 1.0 equiv), methyl 2-formylbenzoate (4a, 0.15 mmol, 1.5 equiv), chiral phosphoric acid A5 (5.0 mol%), and 4 Å MS (100 mg) were stirred in toluene (1.0 mL) at r.t. under N2. Upon completion of the reaction, the solvent was removed and the crude mixture was purified by flash column chromatography. 9H-Isoindolo[1,2-c]pyrrolo[1,2-a][1,4]benzodiazepin-11(15bH)-one (2a) White solid; yield: 53.2 mg (93%); mp 192-195 °C. 1H NMR (400 MHz, CDCl3): δ = 7.91 (d, J = 7.5 Hz, 1 H), 7.64–7.44 (m, 6 H), 7.35 (t, J = 7.4 Hz, 1 H), 7.10 (d, J = 2.9 Hz, 1 H), 6.26 (t, J = 3.3 Hz, 1 H), 5.94 (d, J = 3.5 Hz, 1 H), 5.40 (s, 1 H), 5.06 (d, J = 13.9 Hz, 1 H), 4.17 (d, J = 13.9 Hz, 1 H). 13C NMR (101 MHz, CDCl3): δ = 167.0, 141.7, 140.2, 133.6, 131.5, 131.2, 130.0, 128.9, 128.5, 127.3, 124.0, 123.6, 121.8, 109.5, 107.2, 56.4, 44.6. CCDC 1964245 contains the supplementary crystallographic data for compound 2a. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures.