Synlett
DOI: 10.1055/a-1503-7976
synpacts

Catalytic Enantioselective Synthesis of Silicon-Stereogenic Alkoxy­silanes and Siloxanes

Jiefeng Zhu
a  Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, Guangdong 518055, P. R. of China
b  School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150080, P. R. of China
,
Chuan He
a  Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, Guangdong 518055, P. R. of China
› Author Affiliations
We are grateful for financial support from the National Natural Science Foundation of China (21901104), Shenzhen Science and Technology Innovation Committee (JCYJ20190809142809370), and Guangdong Provincial Key Laboratory of Catalysis (2020B121201002).


Abstract

A Rh-catalyzed enantioselective intermolecular dehydrogenative Si–O coupling of dihydrosilanes with alcohols and silanols is demonstrated. Rh(I) catalyst equipped with a Josiphos ligand enables the highly enantioselective alcoholysis process of dihydrosilanes, giving access to a variety of functionalized triorgano-substituted silicon-stereogenic alkoxysilanes and siloxanes in decent yields and ee, which significantly expand the chemical space of the silicon-centered chiral molecules. Utility of this methodology is illustrated by the construction of circularly polarized luminescence (CPL) active chiral alkoxysilane small organic molecules.

1 Introduction

2 Conditions Optimization

3 Substrate Scope

4 Application

5 Conclusions

6 Experimental Procedure



Publication History

Received: 14 April 2021

Accepted after revision: 10 May 2021

Publication Date:
10 May 2021 (online)

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 2a Lalonde M, Chan TH. Synthesis 1985; 817
    • 2b Chan TH, Wang D. Chem. Rev. 1992; 92: 995
    • 2c Kamino BA, Bender TP. Chem. Soc. Rev. 2013; 42: 5119
    • 2d Kuroda K, Shimojima A, Kawahara K, Wakabayashi R, Tamura Y, Asakura Y, Kitahara M. Chem. Mater. 2014; 26: 211
    • 2e Xu L.-W, Chen Y, Lu Y. Angew. Chem. Int. Ed. 2015; 54: 9456
    • 2f Issa AA, Luyt AS. Polymers 2019; 11: 537
    • 2g Reyes-Rodriguez GJ, Rezayee NM, Vidal-Albalat A, Jørgensen KA. Chem. Rev. 2019; 119: 4221
  • 3 Weickgenannt A, Oestreich M. In Asymmetric Synthesis: More Methods and Applications. Christmann M, Bräse S. Wiley-VCH; Weinheim: 2012: 35-42
    • 4a Rendler S, Oestreich M. Synthesis 2005; 1727
    • 4b Berry RS. J. Chem. Phys. 1960; 32: 933
    • 4c Couzijn EP. A, Slootweg JC, Ehlers AW, Lammertsma K. J. Am. Chem. Soc. 2010; 132: 18127
    • 4d Moberg C. Angew. Chem. Int. Ed. 2011; 50: 10290
    • 5a Xu L.-W, Li L, Lai G.-Q, Jiang J.-X. Chem. Soc. Rev. 2011; 40: 1777
    • 5b Oestreich M. Synlett 2007; 1629
    • 5c Weickgenannt A, Mewald M, Oestreich M. Org. Biomol. Chem. 2010; 8: 1497
    • 5d Sommer LH, Frye CL. J. Am. Chem. Soc. 1959; 81: 1013
    • 5e Rendler S, Auer G, Keller M, Oestreich M. Adv. Synth. Catal. 2006; 348: 1171
    • 5f Klare HF. T, Oestreich M. Angew. Chem. Int. Ed. 2007; 46: 9335
    • 6a Corriu RJ. P, Moreau JJ. E. Tetrahedron Lett. 1973; 4469
    • 6b Corriu RJ. P, Moreau JJ. E. J. Organomet. Chem. 1976; 120: 337
    • 6c Schmidt DR, O’Malley SJ, Leighton JL. J. Am. Chem. Soc. 2003; 125: 1190
    • 7a Bauer JO, Strohmann C. Eur. J. Inorg. Chem. 2016; 2868
    • 7b Klebe JF, Finkbeiner HL. J. Am. Chem. Soc. 1966; 88: 4740
    • 7c Kobayashi K, Kato T, Unno M, Masuda S. Bull. Chem. Soc. Jpn. 1997; 70: 1393
    • 7d Oestreich M, Schmid UK, Auer G, Keller M. Synthesis 2003; 2725
    • 7e Igawa K, Takada J, Shimono T, Tomooka K. J. Am. Chem. Soc. 2008; 130: 16132
    • 7f Bauer JO, Strohmann C. Angew. Chem. Int. Ed. 2014; 53: 720
    • 7g Bai X.-F, Zou J.-F, Chen M.-Y, Xu Z, Li L, Cui Y.-M, Zheng Z.-J, Xu L.-W. Chem. Asian J. 2017; 12: 1730
    • 8a Xu L.-W. Angew. Chem. Int. Ed. 2012; 51: 12932
    • 8b Shintani R. Asian J. Org. Chem. 2015; 4: 510
    • 8c Shintani R. Synlett 2018; 29: 388
    • 9a Xu J.-X, Chen M.-Y, Zheng Z.-J, Cao J, Xu Z, Cui Y.-M, Xu L.-W. ChemCatChem 2017; 9: 3111
    • 9b Long P.-W, Bai X.-F, Ye F, Li L, Xu Z, Yang K.-F, Cui Y.-M, Zheng Z.-J, Xu L.-W. Adv. Synth. Catal. 2018; 360: 2825
  • 10 Corriu RJ. P, Moreau JJ. E. J. Organomet. Chem. 1974; 64: C51
  • 11 Hayashi T, Yamamoto K, Kumada M. Tetrahedron Lett. 1974; 331
  • 12 Ohta T, Ito M, Tsuneto A, Takaya H. J. Chem. Soc., Chem. Commun. 1994; 2525
  • 13 Shintani R, Maciver EE, Tamakuni F, Hayashi T. J. Am. Chem. Soc. 2012; 134: 16955
  • 14 Kumar R, Hoshimoto Y, Yabuki H, Ohashi M, Ogoshi S. J. Am. Chem. Soc. 2015; 137: 11838
    • 15a Mu D, Yuan W, Chen S, Wang N, Yang B, You L, Zu B, Yu P, He C. J. Am. Chem. Soc. 2020; 142: 13459
    • 15b Yang B, Yang W, Guo Y, You L, He C. Angew. Chem. Int. Ed. 2020; 59: 22217
    • 15c Yuan W, You L, Lin W, Ke J, Li Y, He C. Org. Lett. 2021; 23: 1367
    • 15d Chen S, Mu D, Mai P-L, Ke J, Li Y, He C. Nat. Commun. 2021; 12: 1249
    • 15e Guo Y, Liu M.-M, Zhu X, Zhu L, He C. Angew. Chem. Int. Ed. 2021; in press DOI: 10.1002/anie.202103748.
  • 16 Zhu J, Chen S, He C. J. Am. Chem. Soc. 2021; 143: 5301
    • 17a Kawakami Y, Kakihana Y, Ooi O, Oishi M, Suzuki K, Shinke S, Uenishi K. Polym. Int. 2009; 58: 279
    • 17b Xue L, Kawakami Y. Polym. J. 2007; 39: 379
    • 17c Wang X.-Q, Zhai X.-Y, Wu B, Bai Y.-Q, Zhou Y.-G. ACS Macro Lett. 2020; 9: 969
    • 18a Riehl JP, Richardson FS. Chem. Rev. 1986; 86 1
    • 18b Kumar J, Nakashima T, Kawai T. J. Phys. Chem. Lett. 2015; 6: 3445
    • 18c Han J, Guo S, Lu H, Liu S, Zhao Q, Huang W. Adv. Opt. Mater. 2018; 6: 1800538
    • 18d Sang Y, Han J, Zhao T, Duan P, Liu M. Adv. Mater. 2020; 32: 1900110
  • 19 Sanchez-Carnerero EM, Agarrabeitia AR, Moreno F, Maroto BL, Muller G, Ortiz MJ, de la Moya S. Chem. Eur. J. 2015; 21: 13488