Synlett 2021; 32(12): 1201-1206
DOI: 10.1055/a-1506-4509
letter

Diastereoselective Synthesis of Spiropyrazolones via 1,3-Dipolar [3+2] Cycloadditions between Pyrazolone-Based Olefins and N,N′-Cyclic Azomethine Imines

Zhe Tang
,
Hui-Hui Wu
,
Xiao-Zu Fan
,
Heng Zhang
,
Lu-Yu Cai
,
Xiao-Fan Bi
,
Hong-Wu Zhao
We thank the Beijing Municipal Commission of Education (JC015001200902), the Beijing Municipal Natural Science Foundation (7102010, 2122008, and 2172003), the Basic Research Foundation of Beijing University of Technology (X4015001201101), the Funding Project for Academic Human Resources Development in Institutions of Higher Learning Under the Jurisdiction of Beijing Municipality (PHR201008025), the Doctoral Scientific Research Start-up Foundation of Beijing University of Technology (52015001200701) for financial supports.


Abstract

Under the catalysis of PhCO2H, the 1,3-dipolar [3+2] cyclo­addition between pyrazolone-based olefins and N,N′-cyclic azomethine imines proceeded readily, thus delivering structurally novel spiropyrazolones with up to 98% yield and >20:1 dr. The relative stereochemical configuration of the obtained spiropyrazolones was unambiguously ­assigned by X-ray single-crystal structure analysis. The diastereoselective formation of the title spiropyrazolones was interpreted by the hypothesized reaction mechanism.

Supporting Information

Primary Data



Publication History

Received: 16 April 2021

Accepted after revision: 11 May 2021

Accepted Manuscript online:
11 May 2021

Article published online:
15 June 2021

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes


    • For selected examples, see:
    • 1a Wu S, Li Y, Xu G, Chen S, Zhang Y, Liu N, Dong G, Miao C, Su H, Zhang W, Sheng C. Eur. J. Med. Chem. 2016; 115: 141
    • 1b Zhang Y, Wu S, Wang S, Fang K, Dong G, Liu N, Miao Z, Yao J, Li J, Zhang W, Sheng C, Wang W. Eur. J. Org. Chem. 2015; 2030
    • 1c Wang L, Yang Z, Ni T, Shi W, Guo Y, Li K, Shi A, Wu S, Sheng C. Bioorg. Med. Chem. Lett. 2020; 30: 126662
    • 1d Chande MS, Barve PA, Suryanarayan V. J. Heterocycl. Chem. 2007; 44: 49
    • 1e Han B, Xu S, Wang P. CN 104610148, 2015
    • 1f Silaychev PS, Filimonov VO, Maslivets AN, Makhmudov RR. RU 2577528, 2014
    • 1g Bao X, Wei S, Qian X, Qu J, Wang B, Zou L, Ge G. Org. Lett. 2018; 20: 3394

      For a review, see:
    • 2a Xie X, Xiang L, Peng C, Han B. Chem. Rec. 2019; 19: 2209

    • For selected examples, see:
    • 2b Awasthi A, Yadav P, Kumar V, Tiwari DK. Adv. Synth. Catal. 2020; 362: 4378
    • 2c Zhang J, Chan W.-L, Chen L, Ullah N, Lu Y. Org. Chem. Front. 2019; 6: 2210
    • 2d Cheng C, Sun X, Miao Z. Org. Biomol. Chem. 2020; 18: 5577
    • 2e Lin Y, Zhao B.-L, Du D.-M. J. Org. Chem. 2019; 84: 10209
    • 2f Chen N, Zhu L, Gan L, Liu Z, Wang R, Cai X, Jiang X. Eur. J. Org. Chem. 2018; 2939
    • 2g Maity R, Sahoo SC, Pan SC. Eur. J. Org. Chem. 2019; 2297
    • 2h Wang C, Wen D, Chen H, Deng Y, Liu X, Liu X, Wang L, Gao F, Guo Y, Sun M, Wang K, Yan W. Org. Biomol. Chem. 2019; 17: 5514

      For selected examples, see:
    • 3a Mao B, Liu H, Yan Z, Xu Y, Xu J, Wang W, Wu Y, Guo H. Angew. Chem. Int. Ed. 2020; 59: 11316
    • 3b da Silva AF, Leonarczyk IA, Ferreira MA. B, Jurberg ID. Org. Chem. Front. 2020; 7: 3599
    • 3c Meninno S, Mazzanti A, Lattanzi A. Adv. Synth. Catal. 2019; 361: 79
    • 3d Zhang Y, Wang C, Huang W, Haruehanroengra P, Peng C, Sheng J, Han B, He G. Org. Chem. Front. 2018; 5: 2229
    • 3e Zhao C, Shi K, He G, Gu Q, Ru Z, Yang L, Zhong G. Org. Lett. 2019; 21: 7943
    • 3f Mondal B, Maity R, Pan SC. J. Org. Chem. 2018; 83: 8645
    • 3g Liang J.-Y, Shen S.-J, Chai X.-Q, Lv T. J. Org. Chem. 2018; 83: 12744
    • 3h Luo W, Shao B, Li J, Xiao X, Song D, Ling F, Zhong W. Org. Chem. Front. 2020; 7: 1016

      For selected examples, see:
    • 4a Li H, Gontla R, Flegel J, Merten C, Ziegler S, Antonchick AP, Waldmann H. Angew. Chem. Int. Ed. 2019; 58: 307
    • 4b Leng H.-J, Li Q.-Z, Zeng R, Dai Q.-S, Zhu H.-P, Liu Y, Huang W, Han B, Li J.-L. Adv. Synth. Catal. 2018; 360: 229
    • 4c Xu J, Hu L, Hu H, Ge S, Liu X, Feng X. Org. Lett. 2019; 21: 1632
    • 4d Sun B.-B, Chen J.-B, Zhang J.-Q, Yang X.-P, Lv H.-P, Wang Z, Wang X.-W. Org. Chem. Front. 2020; 7: 796
    • 4e Sun B.-B, Zhang J.-Q, Chen J.-B, Fan W.-T, Yu J.-Q, Hu J.-M, Wang X.-W. Org. Chem. Front. 2019; 6: 1842
    • 4f Ji Y.-L, Li H.-P, Ai Y.-Y, Li G, He X.-H, Huang W, Huang R.-Z, Han B. Org. Biomol. Chem. 2019; 17: 9217
    • 4g Krishna AV, Reddy GS, Gorachand B, Ramachary DB. Eur. J. Org. Chem. 2020; 6623

      For examples, see:
    • 5a Li X, Chen F.-Y, Kang J.-W, Zhou J, Peng C, Huang W, Zhou M.-K, He G, Han B. J. Org. Chem. 2019; 84: 9138
    • 5b Khairnar PV, Wu C.-Y, Lin Y.-F, Edukondalu A, Chen Y.-R, Lin W. Org. Lett. 2020; 22: 4760

      For selected examples, see:
    • 6a Cheng C, Zhang J, Wang X, Miao Z. J. Org. Chem. 2018; 83: 5450
    • 6b Du J, Wu J.-H, Zhu L, Ren X, Jiang C, Wang T. Adv. Synth. Catal. 2020; 362: 2510
    • 6c Cheng C, Sun X, Wu Z, Liu Q, Xiong L, Miao Z. Org. Biomol. Chem. 2019; 17: 3232
    • 6d Shi Q, Zhang W, Wang Y, Qu L, Wei D. Org. Biomol. Chem. 2018; 16: 2301
    • 6e Xu J, Yang W, Shi W, Mao B, Lin Y, Xiao Y, Guo H. Tetrahedron 2019; 75: 3609
    • 6f Mutyala R, Reddy VR, Donthi R, Kallaganti VS. R, Chandra R. Tetrahedron Lett. 2019; 60: 703
    • 6g Wang D, Wang X, Zhang XG, Miao ZW. Synthesis 2019; 51: 2149
    • 6h Tan F, Su S, Liu Z. J. Heterocycl. Chem. 2020; 57: 2904

      For a review, see:
    • 7a Požgan F, Al Mamari H, Grošelj U, Svete J, Štefane B. Molecules 2018; 23: 3

    • For selected examples, see:
    • 7b Xu X, Qian Y, Zavalij PY, Doyle MP. J. Am. Chem. Soc. 2013; 135: 1244
    • 7c Gong J, Wan Q, Kang Q. Org. Lett. 2018; 20: 3354
    • 7d Tong TM. T, Soeta T, Suga T, Kawamoto K, Hayashi Y, Ukaji Y. J. Org. Chem. 2017; 82: 1969
    • 7e Volpe C, Meninno S, Capobianco A, Vigliotta G, Lattanzi A. Adv. Synth. Catal. 2019; 361: 1018
    • 7f Fang Q.-Y, Jin H.-S, Wang R.-B, Zhao L.-M. Chem. Commun. 2019; 55: 10587
    • 7g Li C, Wang C.-S, Li T.-Z, Mei G.-J, Shi F. Org. Lett. 2019; 21: 598
    • 7h Yang Q.-Q, Yin X, He X.-L, Du W, Chen Y.-C. ACS Catal. 2019; 9: 1258
  • 8 Typical Procedure and Characterization Data for 3aa A mixture of pyrazolone-based olefin 1a (1.0 equiv, 0.1 mmol), N,N′-cyclic azomethine imine 2a (1.25 equiv, 0.125 mmol), and PhCO2H (20.0 mol%) in toluene (1.0 mL) was stirred at 110 ℃. After the reaction was completed as indicated by TLC plate, the solvent was removed by evaporation and the resulted crude product was purified by flash column chromatography on silica gel (petroleum ether/ethyl acetate, 4:1 to 2:1) to afford product trans-3aa (92% yield). Compound 3aa: white solid, yield 40.1 mg, 92%; mp 157.2–157.4 ℃. 1H NMR (400 MHz, CDCl3): δ = 7.82 (d, J = 7.6 Hz, 2 H), 7.44 (t, J = 8.0 Hz, 2 H), 7.33–7.24 (m, 9 H), 7.17 (d, J = 7.2 Hz, 2 H), 5.78 (s, 1 H), 4.43 (s, 1 H), 3.97–3.91 (m, 1 H), 3.28–3.21 (m, 1 H), 3.11–3.03 (m, 1 H), 3.00–2.91 (m, 1 H), 1.53 (s, 3 H) ppm. 13C NMR (100 MHz, CDCl3): δ = 173.6, 170.9, 159.5, 137.4, 135.4, 131.9, 129.1, 129.0, 128.94, 128.90, 128.2, 126.1, 125.7, 125.1, 119.3, 77.5, 72.9, 63.9, 47.9, 32.0, 17.2 ppm. HRMS (ESI): m/z calcd for C27H25N4O2 [M + H]+: 437.1972; found: 437.1964.
  • 9 CCDC 2065581 (trans-3ak) contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Center via www.ccdc.cam.ac.uk/structures.