CC BY-NC-ND 4.0 · Organic Materials 2021; 03(02): 374-380
DOI: 10.1055/a-1512-5965
Focus Issue: Supramolecular Optoelectronic Materials
Short Communication

Supramolecular Chirogenesis Engineered by Pt(II)···Pt(II) Metal–Metal Interactions

Chengpeng Wei
a   CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026 (P. R. of China)
,
Mingyang Liu
a   CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026 (P. R. of China)
,
Yifei Han
a   CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026 (P. R. of China)
,
Hua Zhong
a   CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026 (P. R. of China)
,
a   CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026 (P. R. of China)
› Institutsangaben
Funding Information This work was supported by the National Natural Science Foundation of China (21922110 and 21871245), the Fundamental Research Funds for the Central Universities (WK3450000005), and the CAS Youth Innovation Promotion Association (Y201986). The DFT computations were performed at the supercomputing center. We are grateful for the technical support from the High-Performance Computing Center of the University of Science and Technology of China.


Abstract

Supramolecular chirogenesis represents an effective way to induce chirality at the supramolecular level. For the previous host–guest chirogenic systems, metal–ligand coordination, hydrogen bonding, π–π stacking and hydrophobic interactions have been mainly employed as the non-covalent driving forces. In this study, Pt(II)···Pt(II) metal–metal interactions have been engineered to induce supramolecular chirogenesis, by forming non-covalent clipping structures between chiral platinum receptors and achiral platinum guests together. This results in the emergence of Cotton effects in the metal–metal-to-ligand charge transfer region, ascribed to chirality transfer from trans-1,2-diamide cyclohexane unit on chiral receptors to Pt(II)---Pt(II) non-covalent interacting sites. Supramolecular chirogenesis can be further transferred from organic to aqueous solutions, with higher resistance to concentration and temperature variations in the latter medium. Overall, the current study provides new avenues toward supramolecular chirality systems with tailored properties.

Supporting Information

Supporting Information for this article is available online at https://doi.org/10.1055/a-1512-5965.


Supporting Information



Publikationsverlauf

Eingereicht: 22. März 2021

Angenommen: 16. Mai 2021

Accepted Manuscript online:
19. Mai 2021

Artikel online veröffentlicht:
25. August 2021

© 2021. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

    • 1a Yashima E, Ousaka N, Taura D, Shimomura K, Ikai T, Maeda K. Chem. Rev. 2016; 116: 13752
    • 1b Liu M, Zhang L, Wang T. Chem. Rev. 2015; 115: 7304
    • 1c Palmans AR. A, Meijer EW. Angew. Chem. Int. Ed. 2007; 46: 8948
    • 1d Dorca Y, Greciano EE, Valera JS, Gómez R, Sánchez L. Chem. Eur. J. 2019; 25: 5848
    • 2a Borovkov VV, Hembury GA, Inoue Y. Acc. Chem. Res. 2004; 37: 449
    • 2b Bobadilla MV. E, Kleij AW. Chem. Sci. 2012; 3: 2421
    • 2c Dhamija A, Mondal P, Saha B. Dalton Trans. 2020; 49: 10679
  • 3 Borovkov VV, Lintuluoto JM, Inoue Y. J. Am. Chem. Soc. 2001; 123: 2979
    • 4a Brahma S, Ikbal SA, Dey S, Rath SP. Chem. Commun. 2012; 48: 4070
    • 4b Brahma S, Ikbal SA, Rath SP. Inorg. Chem. 2014; 53: 49
    • 4c Ikbal SA, Brahma S, Rath SP. Chem. Commun. 2015; 51: 895
    • 5a Wang LL, Chen Z, Liu WE, Ke H, Wang SH, Jiang W. J. Am. Chem. Soc. 2017; 139: 8436
    • 5b Zhu H, Li Q, Gao Z, Wang H, Shi B, Wu Y, Shangguan L, Hong X, Wang F, Huang F. Angew. Chem. Int. Ed. 2020; 59: 10868
    • 5c Chai H, Chen Z, Wang S.-H, Quan M, Yang L.-P, Ke H, Jian W. CCS Chem. 2020; 2: 440
    • 6a Rizzuto FJ, Pröhm P, Plajer AJ, Greenfield JL, Nitschke JR. J. Am. Chem. Soc. 2019; 141: 1707
    • 6b Li B, Zheng B, Zhang W, Zhang D, Yang XJ, Wu B. J. Am. Chem. Soc. 2020; 142: 6304
    • 7a Korevaar PA, George SJ, Markvoort AJ, Smulders MM, Hilbers PA. J, Schenning AP. H. J, De Greef TF, Meijer EW. Nature 2012; 481: 492
    • 7b Dolain C, Jiang H, Léger JM, Guionneau P, Huc I. J. Am. Chem. Soc. 2005; 127: 12943
    • 7c George SJ, Tomović Z, Smulders MM. J, de Greef TF. A, Leclère PE. L. G, Meijer EW, Schenning AP. H. J. Angew. Chem. Int. Ed. 2007; 46: 8206
    • 8a Greenfield JL, Evans EW, Di Nuzzo D, Di Antonio M, Friend RH, Nitschke JR. J. Am. Chem. Soc. 2018; 140: 10344
    • 8b Ishikawa M, Maeda K, Yashima E. J. Am. Chem. Soc. 2002; 124: 7448
    • 8c Yashima E, Maeda K, Furusho Y. Acc. Chem. Res. 2008; 41: 1166
    • 9a Mauro M, Aliprandi A, Septiadi D, Kehr NS, De Cola L. Chem. Soc. Rev. 2014; 43: 4144
    • 9b Yoshida M, Kato M. Coord. Chem. Rev. 2020; 408: 213194
    • 9c Herkert L, Sampedro A, Fernández G. CrystEngComm 2016; 18: 8813
    • 9d Yam VW.-W, Au VK.-M, Leung SY.-L. Chem. Rev. 2015; 115: 7589
    • 9e Crowley JD, Steele IM, Bosnich B. Inorg. Chem. 2005; 44: 2989
    • 9f Crowley JD, Steele IM, Bosnich B. Eur. J. Inorg. Chem. 2005; 3907
    • 10a Wong KM.-C, Yam VW.-W. Acc. Chem. Res. 2011; 44: 424
    • 10b Gao Z, Han Y, Gao Z, Wang F. Acc. Chem. Res. 2018; 51: 2719
    • 10c Han Y, Gao Z, Wang C, Zhong R, Wang F. Coord. Chem. Rev. 2020; 414: 213300
    • 11a Chung CY.-S, Yam VW.-W. J. Am. Chem. Soc. 2011; 133: 18775
    • 11b Wong KM.-C, Chan MM.-Y, Yam VW.-W. Adv. Mater. 2014; 26: 5558
    • 11c Chung CY.-S, Chan KH, Yam VW.-W. Chem. Commun. 2011; 47: 2000
    • 11d Chung CY.-S, Yam VW.-W. Chem. Sci. 2013; 4: 377
    • 11e Chan MC.-L, Yam VW.-W. Chem. Eur. J. 2011; 17: 11987
    • 12a Ly KT, Cheng RW. C, Lin HW, Shiau YJ, Liu SH, Chou PT, Tsao CS, Huang YC, Chi Y. Nat. Photonics 2017; 11: 63
    • 12b Chen WC, Sukpattanacharoen C, Chan WH, Huang CC, Hsu HF, Shen D, Hung WY, Kungwan N, Escudero D, Lee CS, Chi Y. Adv. Funct. Mater. 2020; 30: 2002494
    • 13a Liu M, Han Y, Zhong H, Zhang X, Wang F. Angew. Chem. Int. Ed. 2021; 60: 3498
    • 13b Li Z, Han Y, Nie F, Liu M, Zhong H, Wang F. Angew. Chem. Int. Ed. 2021; 60: 8212
    • 13c Tian Y.-K, Shi Y.-G, Yang Z.-S, Wang F. Angew. Chem. Int. Ed. 2014; 53: 6090
    • 13d Tian Y.-K, Han Y.-F, Yang Z.-S, Wang F. Macromolecules 2016; 49: 6455
    • 13e Zhang X, Han Y, Liu G, Wang F. Chin. Chem. Lett. 2019; 30: 1927
  • 14 Synthetic procedure for compound ( SS )-1: Compound (SS)-5 (30.0 mg, 0.08 mmol), [Pt(tpy)Cl](BF4) (128 mg, 0.18 mmol), CuI (20.0 mg, 0.10 mmol) and TEA (3 mL) in DMF were stirred under a nitrogen atmosphere at room temperature for 48 hours. The mixture was evaporated under reduced pressure, and the residue was extracted with H2O/CH2Cl2. The combined organic extracts were removed with a rotary evaporator, and the residue was purified by flash column chromatography (CH2Cl2/CH3OH, 50:1 v/v as the eluent; R f = 0.3) to afford (SS)-1 as a yellow solid (120 mg, 86%). 1H NMR (400 MHz, CDCl3 δ: 9.09 (d, J = 6.0 Hz, 4 H), 8.86 (s, 4 H), 8.75 (d, J = 2.1 Hz, 4 H), 7.76–7.69 (m, 4 H), 7.60 (dd, J = 6.1, 2.1 Hz, 4 H), 7.53–7.46 (m, 4 H), 6.91 (s, 2 H), 4.05 (s, 2 H), 2.26 (d, J = 9.6 Hz, 2 H), 1.88 (s, 2 H), 1.66 (s, 18 H), 1.51 (s, 36 H). 13C NMR (101 MHz, CDCl3:CH3OD = 3:1) δ: 167.4, 166.3, 157.6, 152.8, 152.6, 130.9, 130.8, 130.1, 127.8, 126.0, 124.5, 122.6, 121.0, 51.7, 36.7, 35.6, 30.5, 29.8, 29.3, 28.7. HRMS: m/z: [M – 2BF4]2+, experimental, 780.3229; calculated, 780.3241, error 1.5 ppm
  • 15 Synthetic procedure for compound ( RR )-1: A similar procedure to that of (SS)-1 was adopted, by employing (RR)-5 (250 mg, 2.19 mmol) instead of (SS)-5. Compound (RR)-1 was obtained as a yellow solid (117 mg, 84%). 1H NMR (400 MHz, CDCl3 δ: 9.09 (d, J = 6.0 Hz, 4 H), 8.68 (s, 4 H), 8.59 (s, 4 H), 7.73 (d, J = 7.9 Hz, 4 H), 7.62 (d, J = 6.0 Hz, 4 H), 7.49 (d, J = 8.0 Hz, 4 H), 6.96–6.88 (m, 2 H), 4.06 (s, 2 H), 2.24 (s, 2 H), 1.88 (s, 2 H), 1.66 (s, 18 H), 1.51 (s, 36 H), 1.47 (s, 4 H). 13C NMR (101 MHz, CDCl3 δ: 166.4, 152.7, 130.8, 126.0, 124.2, 121.4, 53.9, 36.8, 35.6, 29.8, 29.3, 28.3, 28.3. HRMS: m/z: [M – 2BF4]2+, experimental, 780.3226; calculated, 780.3241, error 1.9 ppm
    • 16a Tanaka Y, Wong KM.-C, Yam VW.-W. Chem. Sci. 2012; 3: 1185
    • 16b Li Z, Han Y, Jin F, Gao Z, Gao Z, Ao L, Wang F. Dalton Trans. 2016; 45: 17290
    • 16c Li Z, Han Y, Gao Z, Fu T, Wang F. Mater. Chem. Front. 2018; 2: 76
    • 16d Han Y, Tian Y, Li Z, Wang F. Chem. Soc. Rev. 2018; 47: 5165
    • 16e Ibáñez S, Poyatos M, Peris E. Angew. Chem. Int. Ed. 2017; 56: 9786
    • 16f Biz C, Ibáñez S, Poyatos M, Gusev D, Peris E. Chem. Eur. J. 2017; 23: 14439
    • 16g Ibáñez S, Poyatos M, Peris E. Angew. Chem. Int. Ed. 2018; 57: 16816
    • 16h Ibáñez S, Peris E. Chem. Eur. J. 2019; 25: 8254
    • 17a Leung SY.-L, Tam AY.-Y, Tao C.-H, Chow HS, Yam VW.-W. J. Am. Chem. Soc. 2012; 134: 1047
    • 17b Li Z, Han Y, Gao Z, Wang F. ACS Catal. 2017; 7: 4676
    • 18a Narayan B, Bejagam KK, Balasubramanian S, George SJ. Angew. Chem. Int. Ed. 2015; 54: 13053
    • 18b Sarkar S, Narayan B, George SJ. ChemNanoMat 2020; 6: 1169
  • 19 Chen Z, Lohr A, Saha-Möller CR, Würthner F. Chem. Soc. Rev. 2009; 38: 564
    • 20a Leung SY.-L, Lam WH, Yam VW.-W. Proc. Natl. Acad. Sci. U.S.A. 2013; 110: 7986
    • 20b Norel L, Rudolph M, Vanthuyne N, Williams JA. G, Lescop C, Roussel C, Autschbach J, Crassous J, Réau R. Angew. Chem. Int. Ed. 2010; 49: 99
    • 20c Aliprandi A, Croisetu CM, Mauro M, Cola L. Chem. Eur. J. 2017; 23: 5957
    • 20d Gao Z, Tian Y, Hsu HK, Han Y, Chan YT, Wang F. CCS Chem. 2021; 3: 105