Synlett 2021; 32(12): 1231-1235
DOI: 10.1055/a-1522-9361
letter

Chiral Phosphoric Acid Catalyzed Enantioselective [4+3]-Cyclization Reaction of Indol-4-ylmethanols and Quinone Esters

Zhouli Chen
,
Lei Wang
,
Yiheng Qian
,
Xufeng Lin
Financial support from the National Natural Science Foundation of China (22071213), the Leading Talents of Special Support Program of Zhejiang Province High-level Talents (2020R52008), and Center of Chemistry for Frontier Technologies of Zhejiang University is gratefully acknowledged.


Abstract

An asymmetric [4+3]-cyclization reaction of racemic indol-4-ylmethanols and quinone esters catalyzed by chiral phosphoric acids has been developed. This method provides efficient access to biologically important [1]benzoxepino[5,4,3-cd]indoles featuring both axial and central chirality in good yields and up to 98% ee, as essentially single diastereomers, under mild reaction conditions.

Supporting Information



Publication History

Received: 22 April 2021

Accepted after revision: 03 June 2021

Accepted Manuscript online:
03 June 2021

Article published online:
25 June 2021

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

    • 1a Renfroe B, Harrington C, Proctor GR. The Chemistry of Heterocyclic Compounds, Vol. 43, Azepines . Wiley Interscience; New York: 1984
    • 1b Ogawa H, Yamashita H, Kondo K, Yamamura Y, Miyamoto H, Kan K, Kitano K, Tanaka M, Nakaya K, Nakamura S, Mori T, Tominaga M, Yabuuchi Y. J. Med. Chem. 1996; 39: 3547
    • 1c Comprehensive Heterocyclic Chemistry III . Katritzky AR, Ramsden CA, Scriven EF. V, Taylor RJ. K. Elsevier Science Direct; Amsterdam: 2008
    • 1d Ryan JH, Hyland C, Meyer AG, Smith JA, Yin JX. Prog. Heterocycl. Chem. 2012; 24: 493
    • 2a Ylijoki KE. O, Stryker JM. Chem. Rev. 2013; 113: 2244
    • 2b Pellissier H. Adv. Synth. Catal. 2018; 360: 1551
    • 2c Wender PA, Pedersen TM, Scanio MJ. C. J. Am. Chem. Soc. 2002; 124: 15154
    • 2d Zhou M.-B, Song R.-J, Wang C.-Y, Li J.-H. Angew. Chem. Int. Ed. 2013; 52: 10805
    • 2e Hu C, Song R.-J, Hu M, Yang Y, Li J.-H, Luo S. Angew. Chem. Int. Ed. 2016; 55: 10423
    • 2f Cui L, Ye L, Zhang L. Chem. Commun. 2010; 46: 3351
    • 2g Li T, Xu F, Li X, Wang C, Wan B. Angew. Chem. Int. Ed. 2016; 55: 2861
    • 3a Anslyn EV, Dougherty DA. Modern Physical Organic Chemistry . University Science; Sausalito: 2006
    • 3b Galli C, Mandolini L. Eur. J. Org. Chem. 2000; 3117
    • 4a Selvaraj K, Chauhan S, Sandeep K, Swamy KC. K. Chem. Asian J. 2020; 15: 2380
    • 4b Shintani R, Murakami M, Hayashi T. J. Am. Chem. Soc. 2007; 129: 12356
    • 4c Hu J.-L, Wang L, Xu H, Xie Z, Tang Y. Org. Lett. 2015; 17: 2680
    • 4d Wei L, Yao L, Wang Z.-F, Li H, Tao H.-Y, Wang C.-J. Adv. Synth. Catal. 2016; 358: 3748
    • 4e Wang M, Huang Z, Xu J, Chi YR. J. Am. Chem. Soc. 2014; 136: 1214
    • 4f Yuan C, Zhou L, Xia M, Sun Z, Wang D, Guo H. Org. Lett. 2016; 18: 5644
    • 4g Lv H, Jia W.-Q, Sun L.-H, Ye S. Angew. Chem. Int. Ed. 2013; 52: 8607
    • 4h Izquierdo J, Orue A, Scheidt KA. J. Am. Chem. Soc. 2013; 135: 10634
    • 4i Guo C, Sahoo B, Daniliuc CG, Glorius F. J. Am. Chem. Soc. 2014; 136: 17402
    • 4j Zhu S.-Y, Zhang Y, Wang W, Hui X.-P. Org. Lett. 2017; 19: 5380
    • 4k Trost BM, Zuo Z. Angew. Chem. Int. Ed. 2020; 59: 1243
    • 4l Villar L, Uria U, Martínez JI, Prieto L, Reyes E, Carrillo L, Vicario JL. Angew. Chem. Int. Ed. 2017; 56: 10535
    • 4m Lam H, Qureshi Z, Wegmann M, Lautens M. Angew. Chem. Int. Ed. 2018; 57: 16185
    • 4n Xu C, Qiao J, Dong S, Zhou Y, Liu X, Feng X. Chem. Sci. 2021; 12: 5458
    • 4o Loui HJ, Suneja A, Schneider C. Org. Lett. 2021; 23: 2578
    • 4p Suneja A, Loui HJ, Schneider C. Angew. Chem. Int. Ed. 2020; 59: 5536
    • 4q Gao Y, Song X, Yan R.-J, Du W, Chen Y.-C. Org. Biomol. Chem. 2021; 19: 151
    • 4r Gelis C, Levitre G, Merad J, Retailleau P, Neuville L, Masson G. Angew. Chem. Int. Ed. 2018; 57: 12121
    • 4s Xu G, Chen L, Sun J. Org. Lett. 2018; 20: 3408
    • 5a Liu Y.-Z, Wang Z, Huang Z, Zheng X, Yang W.-L, Deng W.-P. Angew. Chem. Int. Ed. 2020; 59: 1238
    • 5b Sun M, Ma C, Zhou S.-J, Lou S.-F, Xiao J, Jiao Y, Shi F. Angew. Chem. Int. Ed. 2019; 58: 8703
    • 5c Tan Q, Yu H, Luo Y, Chang F, Liu X, Zhou Y, Feng X. Chem. Commun. 2021; 57: 3018
    • 5d Kumari P, Liu W, Wang C.-J, Dai J, Wang M.-X, Yang Q.-Q, Deng Y.-H, Shao Z. Chin. J. Chem. 2020; 38: 151
    • 6a Xu F, Huang D, Han C, Shen W, Lin X, Wang Y. J. Org. Chem. 2010; 75: 8677
    • 6b Xu F, Huang D, Lin X, Wang Y. Org. Biomol. Chem. 2012; 10: 4467
    • 6c Huang D, Xu F, Lin X, Wang Y. Chem. Eur. J. 2012; 18: 3148
    • 6d Li X, Zhao Y, Qu H, Mao Z, Lin X. Chem. Commun. 2013; 49: 1401
    • 6e Huang D, Li X, Xu F, Li L, Lin X. ACS Catal. 2013; 3: 2244
    • 6f Shen X, Wang Y, Wu T, Mao Z, Lin X. Chem. Eur. J. 2015; 21: 9039
    • 6g Lou H, Wang Y, Jin E, Lin X. J. Org. Chem. 2016; 81: 2019
    • 6h Xie E, Rahman A, Lin X. Org. Chem. Front. 2017; 4: 1407
    • 6i Rahman A, Xie E, Lin X. Org. Biomol. Chem. 2018; 16: 1367
    • 6j Wang L, Zhong J, Lin X. Angew. Chem. Int. Ed. 2019; 58: 15824
    • 6k Luo J, Zhang T, Wang L, Liao G, Yao Q.-J, Wu Y.-J, Zhan B.-B, Lan Y, Lin X.-F, Shi B.-F. Angew. Chem. Int. Ed. 2019; 58: 6708
    • 6l Zhan B.-B, Wang L, Luo J, Lin X.-F, Shi B.-F. Angew. Chem. Int. Ed. 2020; 59: 3568
    • 6m Zhan B.-B, Jia Z.-S, Luo J, Jin L, Lin X.-F, Shi B.-F. Org. Lett. 2020; 22: 9693
    • 6n Wang L, Zhong J, Lin X. Synlett 2021; 32: 417
    • 6o Mao Z, Mo F, Lin X. Synlett 2016; 27: 546

    • For recent reviews, see:
    • 6p Rahman A, Lin X. Org. Biomol. Chem. 2018; 16: 4753
    • 6q Lin X, Wang L, Han Z, Chen Z. Chin. J. Chem. 2021; 39: 802
    • 7a Akiyama T, Itoh J, Yokota K, Fuchibe K. Angew. Chem. Int. Ed. 2004; 43: 1566
    • 7b Uraguchi D, Terada M. J. Am. Chem. Soc. 2004; 126: 5356

    • For reviews, see:
    • 7c Akiyama T, Itoh J, Fuchibe K. Adv. Synth. Catal. 2006; 348: 999
    • 7d Akiyama T. Chem. Rev. 2007; 107: 5744
    • 7e Terada M. Chem. Commun. 2008; 4097
    • 7f Adair G, Mukherjee S, List B. Aldrichimica Acta 2008; 41: 31
    • 7g You S.-L, Cai Q, Zeng M. Chem. Soc. Rev. 2009; 38: 2190
    • 7h Terada M. Synthesis 2010; 1929
    • 7i Rueping M, Kuenkel A, Atodiresei I. Chem. Soc. Rev. 2011; 40: 4539
    • 7j Parmar D, Sugiono E, Raja S, Rueping M. Chem. Rev. 2014; 114: 9047
  • 8 2,6-Dihydro[1]benzoxepino[5,4,3-cd]indoles 3ao: General Procedure To a mixture of the appropriate indol-4-ylmethanol 1 (0.05 mmol) and catalyst (S)-4a (0.0025 mmol, 5 mol%) in DCE (0.5 mL) was added the quinone ester 2 (0.06 mmol, 1.2 equiv), and the mixture was stirred at RT for 2 h. The resulting mixture was then purified by flash column chromatography [silica gel, EtOAc–PE (1:4)]. Methyl (6R)-10-Hydroxy-6-phenyl-2,6-dihydro[1]benzoxepino[5,4,3-cd]indole-11-carboxylate (3a) White solid; yield: 16.0 mg (86%; 98% ee); mp 260–261 °C; [α]D 20 –34.100 (c 1.00, CH2Cl2). HPLC [Daicel Chiralcel OD-H (250 × 4.6 mm), hexane/i-PrOH (70:30, 1.0 mL/min), λ = 254 nm]: t R(major) = 8.680 min; t R(minor) = 12.459 min. IR (film): 3391, 3297, 2952, 2925, 2853, 1705, 1536, 1443, 1319, 1212, 1125, 994, 864, 752 cm–1. 1H NMR (400 MHz, DMSO-d 6): δ = 11.57 (d, J = 2.8 Hz, 1 H), 9.63 (s, 1 H), 7.64–7.13 (m, 7 H), 7.12–5.78 (m, 5 H), 3.80 (s, 3 H). 13C NMR (101 MHz, DMSO-d 6): δ = 169.94, 151.13, 140.19, 136.05, 135.94, 128.69, 128.43, 126.57, 126.51, 124.84, 123.29, 121.63, 121.32, 120.16, 117.39, 116.14, 113.32, 111.86, 111.36, 86.55, 52.73. HRMS (ESI+): m/z [M + H]+ calcd for C23H18NO4: 372.1230; found: 372.1231.
  • 9 Methyl (6R)-10-(Benzoyloxy)-6-phenyl-2,6-dihydro[1]benzoxepino[5,4,3-cd]indole-11-carboxylate (7) BzCl (0.1 mmol) was added to a mixture of 3a (0.1 mmol) and Et3N (0.2 mmol) in CH2Cl2 (1 mL) cooled in an ice bath. The temperature was then increased to r.t and the mixture was stirred for 3 h then washed with H2O. The organic phase was purified by flash column chromatography [silica gel, EtOAc–PE (1:4)] to give a white solid; yield: 41.3 mg (87%, 96% ee); mp 145–147 °C; [α]D 20 –25.8 (c 1.00, CH2Cl2). HPLC [Daicel Chiralpak AD-H column (250 × 4.6 mm), hexane–i-PrOH (70:30, 1.0 mL/min), λ = 254 nm]: t R(major) = 14.899 min; t R(minor) = 11.810 min. IR (film): = 3396, 3063, 3033, 2950, 2925, 1735, 1599, 1537, 1442, 1272, 1215, 1083, 1067, 1021, 731, 707, 669 cm–1. 1H NMR (400 MHz, CDCl3): δ = 8.71–8.63 (m, 1 H), 8.17 (dd, J = 8.0, 1.4 Hz, 2 H), 7.68–7.61 (m, 1 H), 7.51 (t, J = 7.7 Hz, 2 H), 7.47–7.34 (m, 6 H), 7.27 (d, J = 8.2 Hz, 1 H), 7.16 (s, 1 H), 7.01 (t, J = 7.8 Hz, 2 H), 6.22 (d, J = 85.3 Hz, 2 H), 3.73 (s, 3 H). 13C NMR (101 MHz, CDCl3): δ = 168.69, 164.89, 144.21, 139.20, 135.39, 133.78, 130.16, 128.98, 128.65, 128.42, 128.41, 128.31, 128.14, 127.09, 125.18, 124.51, 122.79, 122.08, 120.15, 118.16, 111.90, 111.11, 86.77, 77.20, 52.69. HRMS (ESI+): m/z [M + Na]+ calcd for C30H21NNaO5: 498.1312; found: 498.1313. CCDC 2081158 contains the supplementary crystallographic data for compound 7. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures
  • 10 Methyl (6R)-10-Hydroxy-6-phenyl-2,6-dihydro[1]benzoxepino[5,4,3-cd]indole-11-carboxylate (3a): 1 mmol Scale Reaction To a mixture of indol-4-ylmethanol 1a (1 mmol) and catalyst (S)-4a (0.05 mmol, 5 mol%) in DCE (5 mL) was added quinone ester 2a (1.2 mmol, 1.2 equiv), and the mixture was stirred at RT for 2 h. The mixture was then purified by flash column chromatography [silica gel, EtOAc–PE (1:4)] to give a white solid; yield: 289.5 mg [78%; 93% ee (99% ee after crystallization)].
  • 11 Methyl 6-Phenyl-10-(tosylamino)-2,6-dihydro[1]benzoxepino[5,4,3-cd]indole-11-carboxylate (8) To a mixture of indol-4-ylmethanol 1 (0.05 mmol) and catalyst (R)-4h (0.005 mmol, 10 mol%) in DCE (0.5 mL) was added iminoquinone 8 (0.06 mmol, 1.2 equiv), and the mixture was stirred at RT for 6 h. The resulting mixture was then purified by flash column chromatography [silica gel, EtOAc–PE (1:4)] to give a white solid; yield: 21.4 mg (92%; 60% ee); mp 164–167 °C; [α]D 20 +14.023 (c 0.55, CH2Cl2). HPLC [Daicel Chiralpak IA column (250 × 4.6 mm), hexane/i-PrOH (70:30, 1.0 mL/min), λ = 254 nm]: t R(major) = 15.998 min, t R(minor) = 12.919 min. IR (film): 3400, 3268, 2955, 2925, 2854, 1609, 1545, 1479, 1385, 1305, 1159, 1091, 918, 813, 752, 665, 541 cm–1. 1H NMR (400 MHz, DMSO-d 6): δ = 11.62 (d, J = 2.7 Hz, 1 H), 9.96 (s, 1 H), 7.68 (d, J = 2.7 Hz, 1 H), 7.60 (d, J = 7.9 Hz, 2 H), 7.43 (d, J = 2.6 Hz, 1 H), 7.40 (d, J = 8.1 Hz, 1 H), 7.31 (m, 5 H), 7.21 (m, 2 H), 7.01 (dd, J = 7.7, 7.7 Hz, 1 H), 6.74 (d, J = 8.6 Hz, 1 H), 6.63 (dd, J = 8.6, 2.6 Hz, 1 H), 6.36 (d, J = 7.3 Hz, 1 H), 6.22 (s, 1 H), 2.33 (s, 3 H). 13C NMR (101 MHz, DMSO-d 6): δ = 152.65, 143.51, 139.92, 137.19, 136.72, 135.72, 133.91, 130.06, 129.66, 128.94, 128.54, 128.33, 127.25, 124.57, 124.33, 122.64, 121.58, 119.09, 118.50, 117.41, 113.39, 111.90, 85.42, 21.44. HRMS (ESI+): m/z [M + Na]+calcd for C28H22N2NaO3S: 489.1243; found: 489.1244.
  • 12 Methyl 10-Hydroxy-2-methyl-6-phenyl-2,6-dihydro[1]benzoxepino[5,4,3-cd]indole-11-carboxylate (11) To a mixture of the indol-4-ylmethanol 10 (0.05 mmol) and catalyst (S)-4a (0.0025 mmol, 5 mol%) in DCE (0.5 mL) was added quinone ester 2a (0.06 mmol, 1.2 equiv) and the mixture was stirred at RT for 2 h. The mixture was then purified by flash column chromatography [silica gel, EtOAc–PE (1:4)] to give a yellow solid; yield: 16.2 mg (84%; 24% ee); mp 247–249 °C; [α]D 20 –6.830 (c 0.58, CH2Cl2). HPLC [Daicel Chiralcel OD-H column (250 × 4.6 mm), hexane–i-PrOH (70:30, 1.0 mL/min), λ = 254 nm]: t R(major) = 12.721 min, t R(minor) = 9.747 min. IR (film): 3439, 3377, 2925, 1728, 1537, 1466, 1322, 1266, 1207, 1122, 1066, 995, 750 cm–1. 1H NMR (400 MHz, DMSO-d 6): δ = 9.67 (s, 1 H), 7.67–7.18 (m, 7 H), 7.11–5.87 (m, 5 H), 3.89 (s, 3 H), 3.85 (s, 3 H). 13C NMR (101 MHz, DMSO): δ = 169.79, 151.15, 140.11, 139.80, 136.69, 128.97, 128.70, 128.46, 127.26, 126.21, 126.07, 125.14, 124.79, 121.73, 120.10, 117.60, 113.41, 110.59, 110.18, 86.32, 52.87, 33.43. HRMS (ESI+): m/z [M + H]+ calcd for C24H20NO4: 386.1387; found: 386.1386.