Thromb Haemost 2022; 122(04): 506-516
DOI: 10.1055/a-1530-3980
Coagulation and Fibrinolysis

The Proteolytic Inactivation of Protein Z-Dependent Protease Inhibitor by Neutrophil Elastase Might Promote the Procoagulant Activity of Neutrophil Extracellular Traps in Sepsis

1   HITh, UMR_S1176, Institut National de la Santé et de la Recherche Médicale, Université Paris-Saclay, Le Kremlin-Bicêtre, France
,
Mahita Razanakolona
1   HITh, UMR_S1176, Institut National de la Santé et de la Recherche Médicale, Université Paris-Saclay, Le Kremlin-Bicêtre, France
,
Julie Helms
2   Service de Médecine Intensive-Réanimation, Nouvel Hôpital Civil, Hôpitaux universitaires de Strasbourg, Faculté de Médecine, Université de Strasbourg, Strasbourg, France
3   UMR_S1109, Institut National de la Santé et de la Recherche Médicale, Faculté de Médecine, Fédération Hospitalo-Universitaire, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
,
Fouzia Zouiti
4   Service d'Hématologie biologique, Hôpital Antoine Béclère, APHP, Université Paris-Saclay, Clamart, France
,
Amélie Couteau-Chardon
5   Service de Médecine Intensive-Réanimation, Hôpital Européen Georges Pompidou, APHP, Paris, France
,
Viviana Marin-Esteban
6   UMR_996, Institut National de la Santé et de la Recherche Médicale, Université Paris-Saclay, Chatenay-Malabry, France
,
Luc de Chaisemartin
6   UMR_996, Institut National de la Santé et de la Recherche Médicale, Université Paris-Saclay, Chatenay-Malabry, France
7   Laboratoire d'Immunologie, Hôpital Bichat, APHP, Paris, France
,
Allan De-Carvalho
1   HITh, UMR_S1176, Institut National de la Santé et de la Recherche Médicale, Université Paris-Saclay, Le Kremlin-Bicêtre, France
,
Roselyne Bironien
8   Service de Biologie Clinique, Hôpital Foch, Suresnes, France
,
Sylvie Chollet-Martin
6   UMR_996, Institut National de la Santé et de la Recherche Médicale, Université Paris-Saclay, Chatenay-Malabry, France
7   Laboratoire d'Immunologie, Hôpital Bichat, APHP, Paris, France
,
Cécile V. Denis
1   HITh, UMR_S1176, Institut National de la Santé et de la Recherche Médicale, Université Paris-Saclay, Le Kremlin-Bicêtre, France
,
Jean-Luc Diehl
5   Service de Médecine Intensive-Réanimation, Hôpital Européen Georges Pompidou, APHP, Paris, France
9   UMR_S1140, Institut National de la Santé et de la Recherche Médicale, Université de Paris, Paris, France
,
Marc Vasse
1   HITh, UMR_S1176, Institut National de la Santé et de la Recherche Médicale, Université Paris-Saclay, Le Kremlin-Bicêtre, France
8   Service de Biologie Clinique, Hôpital Foch, Suresnes, France
,
Ferhat Meziani
2   Service de Médecine Intensive-Réanimation, Nouvel Hôpital Civil, Hôpitaux universitaires de Strasbourg, Faculté de Médecine, Université de Strasbourg, Strasbourg, France
10   UMR_1260, Institut National de la Santé et de la Recherche Médicale, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
,
Delphine Borgel
1   HITh, UMR_S1176, Institut National de la Santé et de la Recherche Médicale, Université Paris-Saclay, Le Kremlin-Bicêtre, France
11   Laboratoire d'Hématologie Biologique, Hôpital Necker, APHP, Paris, France
› Author Affiliations
Funding This study is funded by the French Intensive Care Society (FICS/SRLF).

Abstract

Septic shock is the archetypal clinical setting in which extensive crosstalk between inflammation and coagulation dysregulates the latter. The main anticoagulant systems are systematically impaired, depleted, and/or downregulated. Protein Z-dependent protease inhibitor (ZPI) is an anticoagulant serpin that not only targets coagulation factors Xa and XIa but also acts as an acute phase reactant whose plasma concentration rises in inflammatory settings. The objective of the present study was to assess the plasma ZPI antigen level in a cohort of patients suffering from septic shock with or without overt-disseminated intravascular coagulation (DIC). The plasma ZPI antigen level was approximately 2.5-fold higher in the patient group (n = 100; 38 with DIC and 62 without) than in healthy controls (n = 31). The elevation's magnitude did not appear to depend on the presence/absence of DIC. Furthermore, Western blots revealed the presence of cleaved ZPI in plasma from patients with severe sepsis, independently of the DIC status. In vitro, ZPI was proteolytically inactivated by purified neutrophil elastase (NE) and by NE on the surface of neutrophil extracellular traps (NETs). The electrophoretic pattern of ZPI after NE-catalyzed proteolysis was very similar to that resulting from the clotting process—suggesting that the cleaved ZPI observed in severe sepsis plasma is devoid of anticoagulant activity. Taken as a whole, our results (1) suggest that NE is involved in ZPI inactivation during sepsis, and (2) reveal a novel putative mechanism for the procoagulant activity of NETs in immunothrombosis.

Supplementary Material



Publication History

Received: 21 December 2020

Accepted: 15 June 2021

Accepted Manuscript online:
16 June 2021

Article published online:
28 July 2021

© 2021. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Han X, Fiehler R, Broze Jr GJ. Characterization of the protein Z-dependent protease inhibitor. Blood 2000; 96 (09) 3049-3055
  • 2 Han X, Huang ZF, Fiehler R, Broze Jr GJ. The protein Z-dependent protease inhibitor is a serpin. Biochemistry 1999; 38 (34) 11073-11078
  • 3 Han X, Fiehler R, Broze Jr GJ. Isolation of a protein Z-dependent plasma protease inhibitor. Proc Natl Acad Sci U S A 1998; 95 (16) 9250-9255
  • 4 Rezaie AR, Sun MF, Gailani D. Contributions of basic amino acids in the autolysis loop of factor XIa to serpin specificity. Biochemistry 2006; 45 (31) 9427-9433
  • 5 Zhang J, Tu Y, Lu L, Lasky N, Broze Jr GJ. Protein Z-dependent protease inhibitor deficiency produces a more severe murine phenotype than protein Z deficiency. Blood 2008; 111 (10) 4973-4978
  • 6 Corral J, González-Conejero R, Hernández-Espinosa D, Vicente V. Protein Z/Z-dependent protease inhibitor (PZ/ZPI) anticoagulant system and thrombosis. Br J Haematol 2007; 137 (02) 99-108
  • 7 Kemkes-Matthes B, Nees M, Kühnel G, Matzdorff A, Matthes KJ. Protein Z influences the prothrombotic phenotype in Factor V Leiden patients. Thromb Res 2002; 106 (4-5): 183-185
  • 8 Martinelli I, Razzari C, Biguzzi E, Bucciarelli P, Mannucci PM. Low levels of protein Z and the risk of venous thromboembolism. J Thromb Haemost 2005; 3 (12) 2817-2819
  • 9 Capurso G, Lattimore S, Crnogorac-Jurcevic T. et al. Gene expression profiles of progressive pancreatic endocrine tumours and their liver metastases reveal potential novel markers and therapeutic targets. Endocr Relat Cancer 2006; 13 (02) 541-558
  • 10 Sierko E, Wojtukiewicz MZ, Ostrowska-Cichocka K, Zimnoch L. Protein Z-dependent protease inhibitor (ZPI) is present in loco in human breast cancer tissue. Thromb Haemost 2010; 104 (01) 183-185
  • 11 Sierko E, Wojtukiewicz MZ, Zimnoch L, Tokajuk P, Ostrowska-Cichocka K, Kisiel W. Co-localization of protein Z, Protein Z-dependent protease inhibitor and coagulation factor X in human colon cancer tissue: implications for coagulation regulation on tumor cells. Thromb Res 2012; 129 (04) e112-e118
  • 12 Sierko E, Wojtukiewicz MZ, Zimnoch L. et al. Protein Z/protein Z-dependent protease inhibitor system in human non-small-cell lung cancer tissue. Thromb Res 2012; 129 (04) e92-e96
  • 13 Sierko E, Wojtukiewicz MZ, Zimnoch L, Tokajuk P, Ostrowska-Cichocka K, Kisiel W. Protein Z/protein Z-dependent protease inhibitor system in loco in human gastric cancer. Ann Hematol 2014; 93 (05) 779-784
  • 14 Sierko E, Zabrocka E, Ostrowska-Cichocka K, Tokajuk P, Zimnoch L, Wojtukiewicz MZ. Co-localization of coagulation factor X and its inhibitory system, PZ/ZPI, in human endometrial cancer tissue. In Vivo 2019; 33 (03) 771-776
  • 15 Girard TJ, Lasky NM, Tuley EA, Broze Jr GJ. Protein Z, protein Z-dependent protease inhibitor (serpinA10), and the acute-phase response. J Thromb Haemost 2013; 11 (02) 375-378
  • 16 Doat S, Borgel D, François J-H. et al. Unbalance between plasma levels of Protein Z and protein Z-dependent inhibitor in patients with colorectal and pancreatic cancer: a pilot study. Thromb Res 2014; 133 (02) 299-300
  • 17 Yoshida T, Souri M, Osaki T. et al. The plasma levels of protein Z-dependent protease inhibitor increase after gynecological surgery independently of estrogen. Thromb Res 2015; 136 (05) 980-986
  • 18 van der Poll T, Levi M. Crosstalk between inflammation and coagulation: the lessons of sepsis. Curr Vasc Pharmacol 2012; 10 (05) 632-638
  • 19 Levi M, van der Poll T. Coagulation and sepsis. Thromb Res 2017; 149: 38-44
  • 20 Davidson SJ. Inflammation and Acute Phase Proteins in Haemostasis. Acute Phase Proteins. Published online July 24, 2013 DOI: 10.5772/55998
  • 21 Li RHL, Tablin F. A comparative review of neutrophil extracellular traps in sepsis. Front Vet Sci 2018; 5: 291
  • 22 Engelmann B, Massberg S. Thrombosis as an intravascular effector of innate immunity. Nat Rev Immunol 2013; 13 (01) 34-45
  • 23 Delabranche X, Stiel L, Severac F. et al. Evidence of Netosis in septic shock-induced disseminated intravascular coagulation. Shock 2017; 47 (03) 313-317
  • 24 Urban CF, Ermert D, Schmid M. et al. Neutrophil extracellular traps contain calprotectin, a cytosolic protein complex involved in host defense against Candida albicans. PLoS Pathog 2009; 5 (10) e1000639
  • 25 Massberg S, Grahl L, von Bruehl M-L. et al. Reciprocal coupling of coagulation and innate immunity via neutrophil serine proteases. Nat Med 2010; 16 (08) 887-896
  • 26 Huang M, Cai S, Su J. The pathogenesis of sepsis and potential therapeutic targets. Int J Mol Sci 2019; 20 (21) E5376
  • 27 Butschkau A, Nagel P, Grambow E, Zechner D, Broze Jr GJ, Vollmar B. Contribution of protein Z and protein Z-dependent protease inhibitor in generalized Shwartzman reaction. Crit Care Med 2013; 41 (12) e447-e456
  • 28 MacDonald RC, MacDonald RI, Menco BP, Takeshita K, Subbarao NK, Hu LR. Small-volume extrusion apparatus for preparation of large, unilamellar vesicles. Biochim Biophys Acta 1991; 1061 (02) 297-303
  • 29 Singer M, Deutschman CS, Seymour CW. et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA 2016; 315 (08) 801-810
  • 30 Iba T, Di Nisio M, Thachil J. et al. Revision of the Japanese Association for Acute Medicine (JAAM) disseminated intravascular coagulation (DIC) diagnostic criteria using antithrombin activity. Crit Care 2016; 20: 287
  • 31 Barrientos L, Marin-Esteban V, de Chaisemartin L. et al. An improved strategy to recover large fragments of functional human neutrophil extracellular traps. Front Immunol 2013; 4: 166
  • 32 Stone SR, Hofsteenge J. Kinetics of the inhibition of thrombin by hirudin. Biochemistry 1986; 25 (16) 4622-4628
  • 33 Jochum M, Lander S, Heimburger N, Fritz H. Effect of human granulocytic elastase on isolated human antithrombin III. Hoppe Seylers Z Physiol Chem 1981; 362 (02) 103-112
  • 34 Eckle I, Seitz R, Egbring R, Kolb G, Havemann K. Protein S degradation in vitro by neutrophil elastase. Scand J Clin Lab Invest 1993; 53 (03) 281-288
  • 35 Carrell RW, Owen MC. Plakalbumin, alpha 1-antitrypsin, antithrombin and the mechanism of inflammatory thrombosis. Nature 1985; 317 (6039): 730-732
  • 36 Tucker EI, Gailani D, Hurst S, Cheng Q, Hanson SR, Gruber A. Survival advantage of coagulation factor XI-deficient mice during peritoneal sepsis. J Infect Dis 2008; 198 (02) 271-274
  • 37 Renné T, Oschatz C, Seifert S. et al. Factor XI deficiency in animal models. J Thromb Haemost 2009; 7 (Suppl. 01) 79-83
  • 38 Levin EG, Santell L. Association of a plasminogen activator inhibitor (PAI-1) with the growth substratum and membrane of human endothelial cells. J Cell Biol 1987; 105 (6 Pt 1): 2543-2549
  • 39 Belorgey D, Bieth JG. DNA binds neutrophil elastase and mucus proteinase inhibitor and impairs their functional activity. FEBS Lett 1995; 361 (2-3): 265-268
  • 40 Belorgey D, Bieth JG. Effect of polynucleotides on the inhibition of neutrophil elastase by mucus proteinase inhibitor and alpha 1-proteinase inhibitor. Biochemistry 1998; 37 (46) 16416-16422
  • 41 Kolaczkowska E, Jenne CN, Surewaard BGJ. et al. Molecular mechanisms of NET formation and degradation revealed by intravital imaging in the liver vasculature. Nat Commun 2015; 6: 6673