Synthesis 2022; 54(01): 171-183
DOI: 10.1055/a-1578-2848
paper

Multigram Synthesis of Difluoromethylene Phosphonic and Phosphinic Amides and Phosphine Oxides via Formal [2,3]-Sigmatropic Allyl Phosphite–Allylphosphonate Rearrangement

,
Gerd-Volker Röschenthaler
This work has been funded by the Bundesministerium für Wirtschaft und Energie (German Federal Ministry of Economic Affairs and Energy) through the ‘GO3’ project (No. 03ETE002C).


Abstract

We describe a method for the preparation of CF2-P(V) building blocks and monomers for biological and materials chemistry applications in multigram quantities based on a formal [2,3]-sigmatropic phospha-Wittig rearrangement of readily available fluoroallyl bis(amido)phosphites, amido(aryl)phosphonites, and diarylphosphinites. The proposed intramolecular phosphorylation approach complements the currently prevailing phosphoryldifluoromethylation methods by providing a straightforward access to difluoromethylene phosphonate analogues bearing dialkylamino and/or aryl substituents at the phosphoryl group. An important advantage of the developed method is that it does not rely on ozone-depleting HCF2Cl and CF2Br2 necessary for the preparation of phosphoryldifluoromethylating reagents. 2,3,3-Trifluoroallyloxy P(III) derivatives substituted with two dialkylamino and/or aryl groups underwent a facile [2,3]-rearrangement to give difluoromethylene phosphonic and phosphinic amides and phosphine oxides on up to a 0.15 mol (30 g) scale. The reaction was extended to P(III) derivatives of 1-substituted 2,3,3-trifluoro- and 3,3-difluoroallylic alcohols readily available from carbonyl compounds and, respectively, 1,1,1,2-tetrafluoroethane and O-protected 2,2,2-trifluoroethanols. Products derived from O-(tetrahydropyran-2-yl)-2,2,2-trifluoroethanol were synthesized and deprotected in a one-pot multistep protocol to give phosphonic and phosphinic amide and phosphine oxide analogues of α,α-difluoro-β-ketophosphonates on a multigram scale.

Supporting Information



Publication History

Received: 26 June 2021

Accepted after revision: 04 August 2021

Accepted Manuscript online:
04 August 2021

Article published online:
02 September 2021

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 2a Blackburn GM, England DA, Kolkmann F. J. Chem. Soc., Chem. Commun. 1981; 930
    • 2b Blackburn GM, Kent DE, Kolkmann F. J. Chem. Soc., Chem. Commun. 1981; 1188
    • 2c Elliott TS, Slowey A, Ye Y, Conway SJ. Med. Chem. Commun. 2012; 3: 735
    • 2d O’Hagan D. Chem. Soc. Rev. 2008; 37: 308
    • 2e O’Hagan D, Wang Y, Skibinski M, Slawin AM. Z. Pure Appl. Chem. 2012; 84: 1587
    • 3a Burke TR. Jr, Kole HK, Roller PP. Biochem. Biophys. Res. Commun. 1994; 204: 129
    • 3b Akamatsu M, Roller PP, Chen L, Zhang Z.-Y, Ye B, Burke TR. Bioorg. Med. Chem. 1997; 5: 157
    • 3c Combs AP. J. Med. Chem. 2010; 53: 2333
    • 3d Romsicki Y, Reece M, Gauthier J.-Y, Asante-Appiah E, Kennedy BP. J. Biol. Chem. 2004; 279: 12868
    • 3e Rawls KA, Grundner C, Ellman JA. Org. Biomol. Chem. 2010; 8: 4066
    • 3f Patel D, Jain M, Shah SR, Bahekar R, Jadav P, Darji B, Siriki Y, Bandyopadhyay D, Joharapurkar A, Kshirsagar S, Patel H, Shaikh M, Sairam KV. V. M, Patel P. ChemMedChem 2011; 6: 1011
    • 3g Kobzar OL, Shevchuk MV, Lyashenko AN, Tanchuk VYu, Romanenko VD, Kobelev SM, Averin AD, Beletskaya IP, Vovk AI, Kukhar VP. Org. Biomol. Chem. 2015; 13: 7437
    • 3h Witten MR, Wissler L, Snow M, Geschwindner S, Read JA, Brandon NJ, Nairn AC, Lombroso PJ, Käck H, Ellman JA. J. Med. Chem. 2017; 60: 9299
    • 4a Hikishima S, Isobe M, Koyanagi S, Soeda S, Shimeno H, Shibuya S, Yokomatsu T. Bioorg. Med. Chem. 2006; 14: 1660
    • 4b Glavaš-Obrovac L, Suver M, Hikishima S, Hashimoto M, Yokomatsu T, Magnowska L, Bzowska A. Chem. Biol. Drug Des. 2010; 75: 392
    • 4c Yamagishi T, Muronoi S, Hikishima S, Shimeno H, Soeda S, Yokomatsu T. J. Org. Chem. 2009; 74: 6350
    • 4d Mandal PK, Liao WS.-L, McMurray JS. Org. Lett. 2009; 11: 3394
    • 4e Mandal PK, Morlacchi P, Knight JM, Link TM, Lee GR. IV, Nurieva R, Singh D, Dhanik A, Kavraki L, Corry DB, Ladbury JE, McMurray JS. J. Med. Chem. 2015; 58: 8970
    • 4f Clinch K, Crump DR, Evans GB, Hazleton KZ, Mason JM, Schramm VL, Tyler PC. Bioorg. Med. Chem. 2013; 21: 5629
    • 4g Liu F, Park J.-E, Lee KS, Burke TR. Jr. Tetrahedron 2009; 65: 9673
    • 4h Xu Y, Jiang G, Tsukahara R, Fujiwara Y, Tigyi G, Prestwich GD. J. Med. Chem. 2006; 49: 5309
    • 4i Kim E, Hong JH. Nucleosides, Nucleotides Nucleic Acids 2016; 35: 130
    • 5a Oertell K, Kashemirov BA, Negahbani A, Minard C, Haratipour P, Alnajjar KS, Sweasy JB, Batra VK, Beard WA, Wilson SH, McKenna CE, Goodman MF. Biochemistry 2018; 57: 3925
    • 5b Whittier SK, Hengge AC, Loria JP. Science 2013; 341: 899
    • 5c Xiao Y, Liu P. Angew. Chem. Int. Ed. 2008; 47: 9722
    • 5d Breer K, Wielgus-Kutrowska B, Girstun A, Staroń K, Hashimoto M, Hikishima S, Yokomatsu T, Bzowska A. Biochem. Biophys. Res. Commun. 2010; 391: 1203
    • 5e Rydzik AM, Warminski M, Sikorski PJ, Baranowski MR, Walczak S, Kowalska J, Zuberek J, Lukaszewicz M, Nowak E, Claridge TD. W, Darzynkiewicz E, Nowotny M, Jemielity J. Nucleic Acids Res. 2017; 45: 8661
    • 5f Panigrahi K, Eggen M, Maeng J.-H, Shen Q, Berkowitz DB. Chem. Biol. 2009; 16: 928
  • 6 Wehbi M, Mehdi A, Negrell C, David G, Alaaeddine A, Améduri B. ACS Appl. Mater. Interfaces 2020; 12: 38
    • 7a Romanenko VD, Kukhar VP. Chem. Rev. 2006; 106: 3868
    • 7b Ivanova MV, Bayle A, Besset T, Pannecoucke X, Poisson T. Chem. Eur. J. 2016; 22: 10284
    • 7c Emerging Fluorinated Motifs: Synthesis, Properties and Applications, Vols. 1 and 2. Cahard D, Ma J.-A. Wiley-VCH; Weinheim: 2020
    • 8a Obayashi M, Ito E, Matsui K, Kondo K. Tetrahedron Lett. 1982; 23: 2323
    • 8b Henry-dit-Quesnel A, Toupet L, Pommelet J.-C, Lequeux T. Org. Biomol. Chem. 2003; 1: 2486
    • 8c Waschbüsch R, Samadi M, Savignac P. J. Organomet. Chem. 1997; 529: 267
    • 8d Röschenthaler G.-V, Kukhar VP, Belik MYu, Mazurenko KI, Sorochinsky AE. Tetrahedron 2006; 62: 9902
    • 8e Cocaud C, Nicolas C, Poisson T, Pannecoucke X, Legault CY, Martin OR. J. Org. Chem. 2017; 82: 2753
    • 8f Panigrahi K, Fei X, Kitamura M, Berkowitz DB. Org. Lett. 2019; 21: 9846
    • 8g Zi Y, Lange M, Vilotijevic I. Chem. Commun. 2020; 56: 5689
    • 9a Piettre SR. Tetrahedron Lett. 1996; 37: 2233
    • 9b Pignard S, Lopin C, Gouhier G, Piettre SR. J. Org. Chem. 2006; 71: 31
    • 9c Sène A, Diab S, Hienzsch A, Cahard D, Lequeux T. Synlett 2009; 981
    • 9d Zhu M, Fu W, Zou G, Xu C, Wang Z. J. Fluorine Chem. 2015; 180: 1
    • 9e Yin G, Zhu M, Yang G, Wang X, Fu W. J. Fluorine Chem. 2016; 191: 63
    • 9f Feng Z, Xiao Y.-L, Zhang X. Org. Chem. Front. 2016; 3: 466
    • 9g Huang W, Chen J, Hong D, Chen W, Cheng X, Tian Y, Li G. J. Org. Chem. 2018; 83: 578
    • 9h Yang Q, Lin Q.-Q, Xing H.-Y, Zhao Z.-G. Org. Chem. Front. 2019; 6: 3939
    • 9i Hu L, Deng Q, Zhou Y, Zhang X, Xiong Y. Tetrahedron 2020; 76: 130949
    • 10a Yokomatsu T, Suemune K, Murano T, Shibuya S. J. Org. Chem. 1996; 61: 7207
    • 10b Qiu W, Burton DJ. Tetrahedron Lett. 1996; 37: 2745
    • 10c Yokomatsu T, Murano T, Suemune K, Shibuya S. Tetrahedron 1997; 53: 815
    • 10d Chen H.-X, Kang J, Chang R, Zhang Y.-L, Duan H.-Z, Li Y.-M, Chen Y.-X. Org. Lett. 2018; 20: 3278
    • 11a Wang Y.-H, Cao Z.-Y, Zhou J. J. Org. Chem. 2016; 81: 7807
    • 11b Das M, O’Shea DF. Chem. Eur. J. 2015; 21: 18717
    • 11c Ivanova MV, Bayle A, Besset T, Poisson T, Pannecoucke X. Angew. Chem. Int. Ed. 2015; 54: 13406
    • 11d Ivanova MV, Bayle A, Besset T, Pannecoucke X, Poisson T. Angew. Chem. Int. Ed. 2016; 55: 14141
    • 11e Ivanova MV, Bayle A, Besset T, Pannecoucke X, Poisson T. Chem. Eur. J. 2017; 23: 17318
    • 11f Ivanova MV, Bayle A, Besset T, Pannecoucke X, Poisson T. Eur. J. Org. Chem. 2017; 2475
    • 11g Ou Y, Gooßen LJ. Asian J. Org. Chem. 2019; 8: 650
    • 11h Krishnamurti V, Barrett C, Prakash GK. S. Org. Lett. 2019; 21: 1526
    • 11i Prakash GK. S, Jog PV, Batamack PT. D, Olah GA. Science 2012; 338: 1324
    • 12a Abrunhosa-Thomas I, Coudray L, Montchamp J.-L. Tetrahedron 2010; 66: 4434
    • 12b Yang Q, Li C, Qi Z.-C, Qiang X.-Y, Yang S.-D. Chem. Eur. J. 2018; 24: 14363
    • 13a Aliouane L, Rigaud B, Pfund E, Jean L, Renard P.-Y, Lequeux T. Tetrahedron Lett. 2011; 52: 3681
    • 13b Gautier A, Garipova G, Salcedo C, Balieu S, Piettre SR. Angew. Chem. Int. Ed. 2004; 43: 5963
    • 13c Zhang J, Lambert E, Xu Z.-F, Brioche J, Remy P, Piettre SR. J. Org. Chem. 2019; 84: 5245
  • 14 Shevchuk M, Wang Q, Pajkert R, Xu J, Mei H, Röschenthaler G.-V, Han J. Adv. Synth. Catal. 2021; 363: 2912
    • 15a Pajkert R, Röschenthaler G.-V. J. Fluorine Chem. 2010; 131: 1362
    • 15b Pajkert R, Milewska M, Röschenthaler G.-V, Koroniak H. J. Fluorine Chem. 2009; 130: 695
    • 15c Pajkert R, Röschenthaler G.-V. J. Org. Chem. 2013; 78: 3697
    • 15d Xie C, Zhang L, Mei H, Pajkert R, Ponomarenko M, Pan Y, Röschenthaler G.-V, Soloshonok VA, Han J. Chem. Eur. J. 2016; 22: 7036
    • 15e Pajkert R, Koroniak H, Kafarski P, Röschenthaler G.-V. Org. Biomol. Chem. 2021; 19: 4871
    • 16a Janecki T, Bodalski R. Synthesis 1990; 799
    • 16b Blades K, Patel ST, Percy JM, Wilkes RD. Tetrahedron Lett. 1996; 37: 6403
  • 17 Parts of this work were presented at the Nanjing Fluorine Days 6th International Symposium on Organofluorine Compounds in Biomedical, Materials and Agriculture Sciences held in Nanjing, China, May 20–24, 2018 and at the 22nd International Symposium on Fluorine Chemistry held in Oxford, UK, July 22–27, 2018.
  • 18 Nguyen T, Wakselman C. J. Org. Chem. 1989; 54: 5640
    • 19a Duda B, Tverdomed SN, Bassil BS, Röschenthaler G.-V. Tetrahedron 2014; 70: 8084
    • 19b Duda B, Tverdomed SN, Ionin BI, Röschenthaler G.-V. Eur. J. Org. Chem. 2012; 3684
    • 19c Tverdomed SN, Kolanowski J, Lork E, Röschenthaler G.-V. Tetrahedron 2011; 67: 3887
    • 19d Duda B, Tverdomed SN, Röschenthaler G.-V. J. Org. Chem. 2011; 76: 71
    • 20a Normant JF, Foulon JP, Masure D, Sauvetre R, Villieras J. Synthesis 1975; 122
    • 20b Burdon J, Coe PL, Haslock IB, Powell RL. Chem. Commun. 1996; 49
    • 20c Balnaves AS, Gelbrich T, Hursthouse MB, Light ME, Palmer MJ, Percy JM. J. Chem. Soc., Perkin Trans. 1 1999; 2525
    • 21a Lequeux TP, Percy JM. J. Chem. Soc., Chem. Commun. 1995; 2111
    • 21b Ladame S, Willson M, Périé J. Eur. J. Org. Chem. 2002; 2640
    • 21c Li X, Bhandari A, Holmes CP, Szardenings AK. Bioorg. Med. Chem. Lett. 2004; 14: 4301
    • 21d Panigrahi K, Applegate GA, Malik G, Berkowitz DB. J. Am. Chem. Soc. 2015; 137: 3600
    • 22a Mykhalchuk VL, Yarmolchuk VS, Doroschuk RO, Tolmachev AA, Grygorenko OO. Eur. J. Org. Chem. 2018; 2870
    • 22b Thierry T, Lebargy C, Pfund E, Lequeux T. J. Org. Chem. 2019; 84: 5877
    • 23a King RB, Sundaram PM. J. Org. Chem. 1984; 49: 1784
    • 23b Krolevets AA, Antipova VV, Adamov AV, Popov AG, Petrovskii PV, Martynov IV. Zh. Obshch. Khim. 1989; 59: 2253 ; Chem. Abstr. 1990, 112, 139180
    • 23c Oliana M, King F, Horton PN, Hursthouse MB, Hii KK. M. J. Org. Chem. 2006; 71: 2472
    • 23d Fluck E, Bieger K, Heckmann G, Weller F, Bögge H. Phosphorus, Sulfur Silicon Relat. Elem. 1994; 90: 59
    • 23e Kreienbrink A, Sárosi MB, Kuhnert R, Wonneberger P, Arkhypchuk AI, Lönnecke P, Ott S, Hey-Hawkins E. Chem. Commun. 2015; 51: 836
    • 24a Bennett AJ, Percy JM, Rock MH. Synlett 1992; 483
    • 24b Basel Y, Hassner A. J. Org. Chem. 2000; 65: 6368
    • 24c Holfter H, Kirchmeier RL, Shreeve JM. Inorg. Chem. 1994; 33: 6369
    • 24d Colin-Messager S, Girard J.-P, Rossi J.-C. Tetrahedron Lett. 1992; 33: 2689
    • 24e Bogie PM, Holloway LR, Ngai C, Miller TF, Grewal DK, Hooley RJ. Chem. – Eur. J. 2019; 25: 10232
    • 24f Booth H, Readshaw SA. Tetrahedron 1990; 46: 2097