Planta Med 2022; 88(12): 1047-1059
DOI: 10.1055/a-1581-3707
Biological and Pharmacological Activity
Original Papers

Activity of THC, CBD, and CBN on Human ACE2 and SARS-CoV1/2 Main Protease to Understand Antiviral Defense Mechanism

1   Technical Biochemistry, Faculty of Biochemical and Chemical Engineering, TU Dortmund University, Dortmund, Germany
,
1   Technical Biochemistry, Faculty of Biochemical and Chemical Engineering, TU Dortmund University, Dortmund, Germany
2   MINDbioscience GmbH, Dortmund, Germany
,
1   Technical Biochemistry, Faculty of Biochemical and Chemical Engineering, TU Dortmund University, Dortmund, Germany
› Institutsangaben
Gefördert durch: Deutscher Akademischer Austauschdienst 57299294

Abstract

THC, CBD, and CBN were reported as promising candidates against SARS-CoV2 infection, but the mechanism of action of these three cannabinoids is not understood. This study aims to determine the mechanism of action of THC, CBD, and CBN by selecting two essential targets that directly affect the coronavirus infections as viral main proteases and human angiotensin-converting enzyme2. Tested THC and CBD presented a dual-action action against both selected targets. Only CBD acted as a potent viral main protease inhibitor at the IC50 value of 1.86 ± 0.04 µM and exhibited only moderate activity against human angiotensin-converting enzyme2 at the IC50 value of 14.65 ± 0.47 µM. THC acted as a moderate inhibitor against both viral main protease and human angiotensin-converting enzymes2 at the IC50 value of 16.23 ± 1.71 µM and 11.47 ± 3.60 µM, respectively. Here, we discuss cannabinoid-associated antiviral activity mechanisms based on in silico docking studies and in vitro receptor binding studies.

Supporting Information



Publikationsverlauf

Eingereicht: 01. Mai 2021

Angenommen nach Revision: 03. August 2021

Artikel online veröffentlicht:
12. Oktober 2021

© 2021. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Ben-Shabat S, Yarmolinsky L, Porat D, Dahan A. Antiviral effect of phytochemicals from medicinal plants: Applications and drug delivery strategies. Drug Deliv Transl Res 2020; 10: 354-367 DOI: 10.1007/s13346-019-00691-6.
  • 2 Watanabe K. Drug-repositioning approach for the discovery of anti-influenza virus activity of Japanese herbal (Kampo) medicines in vitro: Potent high activity of Daio-Kanzo-To. Evid Based Complement Alternat Med 2018; 2018: 6058181 DOI: 10.1155/2018/6058181.
  • 3 Rajasekaran D, Palombo EA, Chia Yeo T, Lim Siok Ley D, Lee Tu C, Malherbe F, Grollo L. Identification of traditional medicinal plant extracts with novel anti-influenza activity. PLoS One 2013; 8: e79293 DOI: 10.1371/journal.pone.0079293.
  • 4 Parvez MK, Tabish Rehman M, Alam P, Al-Dosari MS, Alqasoumi SI, Alajmi MF. Plant-derived antiviral drugs as novel hepatitis B virus inhibitors: Cell culture and molecular docking study. Saudi Pharm J 2019; 27: 389-400 DOI: 10.1016/j.jsps.2018.12.008.
  • 5 Jahan I, Onay A. Potentials of plant-based substance to inhabit and probable cure for the COVID-19. Turk J Biol 2020; 44: 228-241 DOI: 10.3906/biy-2005-114.
  • 6 Boukhatem MN, Setzer WN. Aromatic herbs, medicinal plant-derived essential oils, and phytochemical extracts as potential therapies for Coronaviruses: Future perspectives. Plants 2020; 9: 800 DOI: 10.3390/plants9060800.
  • 7 Wink M. Potential of DNA intercalating alkaloids and other plant secondary metabolites against SARS-CoV-2 causing COVID-19. Diversity 2020; 12: 175 DOI: 10.3390/d12050175.
  • 8 Martinez JP, Sasse F, Brönstrup M, Diez J, Meyerhans A. Antiviral drug discovery: Broad-spectrum drugs from nature. Nat Prod Rep 2015; 32: 29-48 DOI: 10.1039/c4np00085d.
  • 9 Hensel A, Bauer R, Heinrich M, Spiegler V, Kayser O, Hempel G, Kraft K. Challenges at the time of COVID-19: Opportunities and innovations in antivirals from nature. Planta Med 2020; 86: 659-664
  • 10 De Clercq E, Li G. Approved antiviral drugs over the past 50 years. Clin Microbiol Rev 2016; 29: 695-747 DOI: 10.1128/CMR.00102-15.
  • 11 Wang Z, Yang L. Turning the tide: Natural products and natural-product-inspired chemicals as potential counters to SARS-CoV-2 infection. Front Pharmacol 2020; 11: 1013 DOI: 10.3389/fphar.2020.01013.
  • 12 Ni D, Ho DH, Vijjeswarapu M, Felix E, Rhea PR, Newman RA. Metabolism of homoharringtonine, a cytotoxic component of the evergreen plant Cephalotaxus harringtonia. J Exp Ther Oncol 2003; 3: 47-52 DOI: 10.1046/j.1359-4117.2003.01066.x.
  • 13 Abdelkafi H, Nay B. Natural products from Cephalotaxus sp.: chemical diversity and synthetic aspects. Nat Prod Rep 2012; 29: 845-869 DOI: 10.1039/C2NP20037F.
  • 14 Kaur P, Thiruchelvan M, Lee RCH, Chen H, Chen KC, Ng ML, Chu JJ. Inhibition of chikungunya virus replication by harringtonine, a novel antiviral that suppresses viral protein expression. Antimicrob Agents Chemother 2013; 57: 155 DOI: 10.1128/AAC.01467-12.
  • 15 Dong HJ, Wang ZH, Meng W, Li CC, Hu YX, Zhou L, Wang XJ. The natural compound homoharringtonine presents broad antiviral activity in vitro and in vivo . Viruses 2018; 10: 601 DOI: 10.3390/v10110601.
  • 16 Kim JE, Song YJ. Anti-varicella-zoster virus activity of cephalotaxine esters in vitro . J Microbiol 2019; 57: 74-79 DOI: 10.1007/s12275-019-8514-z.
  • 17 Choy KT, Wong AYL, Kaewpreedee P, Sia SF, Chen D, Hui KPY, Chu DKW, Chan MCW, Cheung PP, Huang X, Peiris M, Yen HL. Remdesivir, lopinavir, emetine, and homoharringtonine inhibit SARS-CoV-2 replication in vitro . Antiviral Res 2020; 178: 104786 DOI: 10.1016/j.antiviral.2020.104786.
  • 18 Bleasel MD, Peterson GM. Emetine, Ipecac, Ipecac alkaloids and analogues as potential antiviral agents for Coronaviruses. Pharmaceuticals 2020; 13: 51 DOI: 10.3390/ph13030051.
  • 19 Rosales-López C, Muñoz-Arrieta R, Abdelnour-Esquivel A. Emetine and cephaeline content in plants of Psychotria ipecacuanha in Costa Rica. Rev Colomb Quim 2020; 49: 18-22
  • 20 Yang S, Xu M, Lee EM, Gorshkov K, Shiryaev SA, He S, Sun W, Cheng YS, Hu X, Tharappel AM, Lu B, Pinto A, Farhy C, Huang CT, Zhang Z, Zhu W, Wu Y, Zhou Y, Song G, Zhu H, Shamim K, Martínez-Romero C, García-Sastre A, Preston RA, Jayaweera DT, Huang R, Huang W, Xia M, Simeonov A, Ming G, Qiu X, Terskikh AV, Tang H, Song H, Zheng W. Emetine inhibits Zika and Ebola virus infections through two molecular mechanisms: Inhibiting viral replication and decreasing viral entry. Cell Discov 2018; 4: 31 DOI: 10.1038/s41421-018-0034-1.
  • 21 Wang A, Sun Y, Liu Q, Wu H, Liu J, He J, Yu J, Chen QQ, Ge Y, Zhang Z, Hu C, Chen C, Qi Z, Zou F, Liu F, Hu J, Zhao M, Huang T, Wang B, Wang L, Wang W, Wang W, Ren T, Liu J, Sun Y, Fan S, Wu Q, Liang C, Sun L, Su B, Wei W, Liu Q. Low dose of emetine as potential anti-SARS-CoV-2 virus therapy: Preclinical in vitro inhibition and in vivo pharmacokinetic evidences. Mol biomed 2020; 1: 14 DOI: 10.1186/s43556-020-00018-9.
  • 22 Ribaudo G, Coghi P, Yang LJ, Ng JPL, Mastinu A, Memo M, Wong VKW, Gianoncelli A. Computational and experimental insights on the interaction of artemisinin, dihydroartemisinin and chloroquine with SARS-CoV-2 spike protein receptor-binding domain (RBD). Nat Prod Res 2021; DOI: 10.1080/14786419.2021.1925894.
  • 23 El Biali M, Broers B, Besson M, Demeules J. Cannabinoids and COVID-19. Med Cannabis Cannabinoids 2020; 3: 111-115 DOI: 10.1159/000510799.
  • 24 Hill KP. Cannabinoids and the Coronavirus. Cannabis Cannabinoid Res 2020; 5: 118-120 DOI: 10.1089/can.2020.0035.
  • 25 Esposito G, Pesce M, Seguella L, Sanseverino W, Lu J, Corpetti C, Sarnelli G. The potential of cannabidiol in the COVID-19 pandemic. Br J Pharmacol 2020; 177: 4967-4970 DOI: 10.1111/bph.15157.
  • 26 Onaivi ES, Sharma V. Cannabis for COVID-19: can cannabinoids quell the cytokine storm?. Future Sci OA 2020; 6: FSO625 DOI: 10.2144/fsoa-2020-0124.
  • 27 Dzobo K, Chiririwa H, Dandara C, Dzobo W. Coronavirus disease-2019 treatment strategies targeting interleukin-6 signaling and herbal medicine. OMICS 2020; 25: 13-22 DOI: 10.1089/omi.2020.0122.
  • 28 Wang B, Kovalchuk A, Li D, Rodriguez-Juarez R, Ilnytskyy Y, Kovalchuk I, Kovalchuk O. In search of preventive strategies: Novel high-CBD Cannabis sativa extracts modulate ACE2 expression in COVID-19 gateway tissues. Aging (Albany NY) 2020; 12: 22425-22444 DOI: 10.18632/aging.202225.
  • 29 Raj V, Park JG, Cho KH, Choi P, Kim T, Ham J, Lee J. Assessment of antiviral potencies of cannabinoids against SARS-CoV-2 using computational and in vitro approaches. Int J Biol Macromol 2021; 168: 474-485 DOI: 10.1016/j.ijbiomac.2020.12.020.
  • 30 Tallei TE, Tumilaar SG, Niode NJ, Fatimawali. Kepel BJ, Idroes R, Effendi Y, Sakib SA, Emran TB. Potential of plant bioactive compounds as SARS-CoV-2 Main Protease (Mpro) and Spike (S) glycoprotein inhibitors: A molecular docking study. Scientifica (Cairo) 2020; 2020: 6307457 DOI: 10.1155/2020/6307457.
  • 31 Schulz U, Freitag M, Schmidt K, Witetschek M, Polzin M, Morgenstern O. Synthesis and structure elucidation of 2,3,5,6,7,8-hexahydro-1 H-[1,2,4]triazolo[1,2-a]pyridazine-1-thione, 3,3-disubstituted and 2-substituted derivatives and evaluation of their inhibitory activity against inducible nitric oxide synthase. Pharmazie 2014; 69: 731-744
  • 32 Aleo MF, Bettoni F, Boniotti J, Morandini F, Giuliani R, Steimberg N, Apostoli P, Mazzoleni G. A comparative in vitro study of the toxic potency of five inorganic lead compounds on a rat liver epithelial cell line (REL). Toxicol In Vitro 2006; 20: 874-881 DOI: 10.1016/j.tiv.2006.01.006.
  • 33 Chitranshi N, Gupta VK, Rajput R, Godinez A, Pushpitha K, Shen T, Mirzaei M, You Y, Basavarajappa D, Gupta V, Graham SL. Evolving geographic diversity in SARS-CoV2 and in silico analysis of replicating enzyme 3 CLpro targeting repurposed drug candidates. J Transl Med 2020; 18: 278 DOI: 10.1186/s12967-020-02448-z.
  • 34 Hevener KE, Zhao W, Ball DM, Babaoglu K, Qi J, White SW, Lee RE. Validation of molecular docking programs for virtual screening against dihydropteroate synthase. J Chem Inf Model 2009; 49: 444-460 DOI: 10.1021/ci800293n.
  • 35 Pagadala NS, Syed K, Tuszynski J. Software for molecular docking: A review. Biophys Rev 2017; 9: 91-102 DOI: 10.1007/s12551-016-0247-1.
  • 36 Fu L, Ye F, Feng Y, Yu F, Wang Q, Wu Y, Zhao C, Sun H, Huang B, Niu P, Song H, Shi Y, Li X, Tan W, Qi J, Gao GF. Both Boceprevir and GC376 efficaciously inhibit SARS-CoV-2 by targeting its main protease. Nat Commun 2020; 11: 4417 DOI: 10.1038/s41467-020-18233-x.
  • 37 Böhme T, Simpson CD, Müllen K, Rabe JP. Current–voltage characteristics of a homologous series of polycyclic aromatic hydrocarbons. Chem Eur J 2007; 13: 7349-7357 DOI: 10.1002/chem.200601249.
  • 38 Tay MZ, Poh CM, Rénia L, MacAry PA, Ng LFP. The trinity of COVID-19: immunity, inflammation and intervention. Nat Rev Immunol 2020; 20: 363-374 DOI: 10.1038/s41577-020-0311-8.
  • 39 Rossi F, Tortora C, Argenziano M, Di Paola A, Punzo F. Cannabinoid receptor type 2: A possible target in SARS-CoV-2 (CoV-19) infection?. Int J Mol Sci 2020; 21: 3809 DOI: 10.3390/ijms21113809.
  • 40 Hoffmann M, Kleine-Weber H, Schroeder S, Krüger N, Herrler T, Erichsen S, Schiergens TS, Herrler G, Wu NH, Nitsche A, Müller MA, Drosten C, Pöhlmann S. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and Is blocked by a clinically proven protease inhibitor. Cell 2020; 181: 271-280.e8 DOI: 10.1016/j.cell.2020.02.052.
  • 41 Jin Z, Du X, Xu Y, Deng Y, Liu M, Zhao Y, Zhang B, Li X, Zhang L, Peng C, Duan Y, Yu J, Wang L, Yang K, Liu F, Jiang R, Yang X, You T, Liu X, Yang X, Bai F, Liu H, Liu X, Guddat LW, Xu W, Xiao G, Qin C, Shi Z, Jiang H, Rao Z, Yang H. Structure of Mpro from SARS-CoV-2 and discovery of its inhibitors. Nature 2020; 582: 289-293 DOI: 10.1038/s41586-020-2223-y.
  • 42 Choi BW, Lee HS, Shin HC, Lee BH. Multifunctional activity of polyphenolic compounds associated with a potential for alzheimerʼs disease therapy from Ecklonia cava. Phytother Res 2015; 29: 549-553 DOI: 10.1002/ptr.5282.
  • 43 Rana M, Pareek A, Bhardwaj S, Arya G, Nimesh S, Arya H, Bhatt TK, Yaragorla S, Sharma AK. Aryldiazoquinoline based multifunctional small molecules for modulating Aβ42 aggregation and cholinesterase activity related to Alzheimerʼs disease. RSC Adv 2020; 10: 28827-28837 DOI: 10.1039/D0RA05172A.
  • 44 Koch N, Jennotte O, Gasparrini Y, Vandenbroucke F, Lechanteur A, Evrard B. Cannabidiol aqueous solubility enhancement: Comparison of three amorphous formulations strategies using different type of polymers. Int J Pharm 2020; 589: 119812 DOI: 10.1016/j.ijpharm.2020.119812.
  • 45 Millar SA, Maguire RF, Yates AS, OʼSullivan SE. Towards better delivery of Cannabidiol (CBD). Pharmaceuticals (Basel) 2020; 13: 219 DOI: 10.3390/ph13090219.
  • 46 Towler P, Staker B, Prasad SG, Menon S, Tang J, Parsons T, Ryan D, Fisher M, Williams D, Dales NA, Patane MA, Pantoliano MW. ACE2 X-ray structures reveal a large hinge-bending motion important for inhibitor binding and catalysis. J Biol Chem 2004; 279: 17996-18007 DOI: 10.1074/jbc.M311191200.
  • 47 Wang Q, Zhang Y, Wu L, Niu S, Song C, Zhang Z, Lu G, Qiao C, Hu Y, Yuen KY, Wang Q, Zhou H, Yan J, Qi J. Structural and functional basis of SARS-CoV-2 entry by using human ACE2. Cell 2020; 181: 894-904.e9 DOI: 10.1016/j.cell.2020.03.045.
  • 48 Malin JJ, Suárez I, Priesner V, Fätkenheuer G, Rybniker J. Remdesivir against COVID-19 and other viral diseases. Clin Microbiol Rev 2020; 34: e00162-20 DOI: 10.1128/CMR.00162-20.
  • 49 Gordon CJ, Tchesnokov EP, Woolner E, Perry JK, Feng JY, Porter DP, Götte M. Remdesivir is a direct-acting antiviral that inhibits RNA-dependent RNA polymerase from severe acute respiratory syndrome coronavirus 2 with high potency. J Biol Chem 2020; 295: 6785-6797 DOI: 10.1074/jbc.RA120.013679.
  • 50 Maciorowski D, Idrissi SZE, Gupta Y, Medernach BJ, Burns MB, Becker DP, Durvasula R, Kempaiah P. A review of the preclinical and clinical efficacy of remdesivir, hydroxychloroquine, and lopinavir-ritonavir treatments against COVID-19. SLAS Discov 2020; 25: 1108-1122 DOI: 10.1177/2472555220958385.
  • 51 Carr NT. Using Microsoft Excel® to calculate descriptive statistics and create graphs. Lang Assess Q 2008; 5: 43-62 DOI: 10.1080/15434300701776336.
  • 52 Papautsky EL, Hamlish T. Patient-reported treatment delays in breast cancer care during the COVID-19 pandemic. Breast Cancer Res Treat 2020; 184: 249-254 DOI: 10.1007/s10549-020-05828-7.
  • 53 Becker RC. COVID-19 and its sequelae: a platform for optimal patient care, discovery and training. J Thromb Thrombolysis 2021; DOI: 10.1007/s11239-021-02375-w.
  • 54 Jasper EE, Ajibola VO, Onwuka JC. Nonlinear regression analysis of the sorption of crystal violet and methylene blue from aqueous solutions onto an agro-waste derived activated carbon. Appl Water Sci 2020; 10: 132 DOI: 10.1007/s13201-020-01218-y.
  • 55 R Core Team. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing; 2021. Accessed March 16 2021 at: https://www.R-project.org/
  • 56 R Studio Team. RStudio: Integrated Development Environment for R. Boston, MA: RStudio, PBC; 2021. Accessed March 16, 2021 at: http://www.rstudio.com/
  • 57 Baty F, Ritz C, Charles S, Brutsche M, Flandrois JP, Delignette-Muller ML. A toolbox for nonlinear regression in R: The package nlstools. J Stat Softw 2015; 66: 1-21
  • 58 Zeviani WM. wzRfun: Walmes Zevianiʼs collection of functions. 2019. Accessed March 18, 2021 at: https://github.com/walmes/wzRfun
  • 59 Hanwell MD, Curtis DE, Lonie DC, Vandermeersch T, Zurek E, Hutchison GR. Avogadro: An advanced semantic chemical editor, visualization, and analysis platform. J Cheminformatics 2012; 4: 17 DOI: 10.1186/1758-2946-4-17.
  • 60 Trott O, Olson AJ. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 2010; 31: 455-461 DOI: 10.1002/jcc.21334.
  • 61 Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE. UCSF Chimera–A visualization system for exploratory research and analysis. J Comput Chem 2004; 25: 1605-1612 DOI: 10.1002/jcc.20084.
  • 62 Schneider N, Hindle S, Lange G, Klein R, Albrecht J, Briem H, Beyer K, Claußen H, Gastreich M, Lemmen C, Rarey M. Substantial improvements in large-scale redocking and screening using the novel HYDE scoring function. J Comput Aided Mol Des 2012; 26: 701-723 DOI: 10.1007/s10822-011-9531-0.
  • 63 Musoev A, Numonov S, You Z, Gao H. Discovery of novel DPP-IV inhibitors as potential candidates for the treatment of type 2 diabetes mellitus predicted by 3D QSAR Pharmacophore models, molecular docking and de novo evolution. Molecules 2019; 24: 2870 DOI: 10.3390/molecules24162870.
  • 64 Gurung AB, Ali MA, Lee J, Farah MA, Al-Anazi KM. Unravelling lead antiviral phytochemicals for the inhibition of SARS-CoV-2 Mpro enzyme through in silico approach. Life Sci 2020; 255: 117831 DOI: 10.1016/j.lfs.2020.117831.
  • 65 Ramírez D, Caballero J. Is it reliable to take the molecular docking top scoring position as the best solution without considering available structural data?. Molecules 2018; 23: 1038 DOI: 10.3390/molecules23051038.
  • 66 Velázquez-Libera JL, Murillo-López JA, de la Torre AF, Caballero J. Structural requirements of N-alpha-Mercaptoacetyl Dipeptide (NAMdP) inhibitors of pseudomonas aeruginosa virulence factor LasB: 3D-QSAR, molecular docking, and interaction fingerprint studies. Int J Mol Sci 2019; 20: 6133 DOI: 10.3390/ijms20246133.
  • 67 Biovia DS. Discovery Studio Visualizer. San Diego, CA, USA: Dassault Systèmes; 2017: 936