Hamostaseologie 2021; 41(05): 379-385
DOI: 10.1055/a-1581-4355
Review Article

Platelets and COVID-19

Anne-Katrin Rohlfing
1   Department of Cardiology and Angiology, University Hospital Tübingen, Eberhard Karls Universtität Tübingen, Tübingen, Germany
,
Dominik Rath
1   Department of Cardiology and Angiology, University Hospital Tübingen, Eberhard Karls Universtität Tübingen, Tübingen, Germany
,
Tobias Geisler
1   Department of Cardiology and Angiology, University Hospital Tübingen, Eberhard Karls Universtität Tübingen, Tübingen, Germany
,
Meinrad Gawaz
1   Department of Cardiology and Angiology, University Hospital Tübingen, Eberhard Karls Universtität Tübingen, Tübingen, Germany
› Author Affiliations
Funding This project was supported by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)—project number 374031971–TRR 240 (molecular aspects).

Abstract

In 2019 first reports about a new human coronavirus emerged, which causes common cold symptoms as well as acute respiratory distress syndrome. The virus was identified as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and severe thrombotic events including deep vein thrombosis, pulmonary embolism, and microthrombi emerged as additional symptoms. Heart failure, myocardial infarction, myocarditis, and stroke have also been observed. As main mediator of thrombus formation, platelets became one of the key aspects in SARS-CoV-2 research. Platelets may also directly interact with SARS-CoV-2 and have been shown to carry the SARS-CoV-2 virus. Platelets can also facilitate the virus uptake by secretion of the subtilisin-like proprotein convertase furin. Cleavage of the SARS-CoV-2 spike protein by furin enhances binding capabilities and virus entry into various cell types. In COVID-19 patients, platelet count differs between mild and serious infections. Patients with mild symptoms have a slightly increased platelet count, whereas thrombocytopenia is a hallmark of severe COVID-19 infections. Low platelet count can be attributed to platelet apoptosis and the incorporation of platelets into microthrombi (peripheral consumption) and severe thrombotic events. The observed excessive formation of thrombi is due to hyperactivation of platelets caused by the infection. Various factors have been suggested in the activation of platelets in COVID-19, such as hypoxia, vessel damage, inflammatory factors, NETosis, SARS-CoV-2 interaction, autoimmune reactions, and autocrine activation. COVID-19 does alter chemokine and cytokine plasma concentrations. Platelet chemokine profiles are altered in COVID-19 and contribute to the described chemokine storms observed in severely ill COVID-19 patients.

Zusammenfassung

In 2019 wurden erste Berichte über ein neuartiges Coronavirus bekannt, welches bei Menschen Erkältungssymptome aber auch ein akutes Lungenversargen (ARDS) auslösen kann. Das Virus wurde als SARS-CoV-2 eingeordnet und schwere Thrombosen, wie z.B. tiefe Venenthrombosen und Lungenembolien, sowie Mikrothromben als zusätzliche Symptome identifiziert. Herzinfarkte, Myokarditis sowie Schlaganfälle wurden ebenfalls beobachtet. Als einer der Hauptmediatoren der Thrombusbildung wurden Thrombozyten schnell zu einem Fokus der SARS-CoV-2 Forschung. Blutplättchen können wahrscheinlich direkt mit SARS-CoV-2 interagieren und es wurde gezeigt das sich Viruspartikel im Zytosol von Thrombozyten befinden können. Thrombozyten können darüber hinaus die Aufnahme des Virus erleichtern, indem sie die subtilisin-like proprotein convertase furin sezernieren, welche das Spike Protein von SARS-CoV-2 Viren spaltet und dadurch die Bindungskapazität des Proteins an zelluläre Rezeptoren erhöht. Die Thrombozytenzahl wird durch eine Covid-19 Infektion beeinflusst. Patienten mit milden Symptomen zeigen leicht erhöhte Thrombozytenwerte, wohingegen eine Thrombozytopenie ein wichtiges Merkmal einer schweren Erkrankung ist. Diese geringe Thrombozytenzahl kann auf eine erhöhte Apoptose sowie den Einschluss von Thrombozyten in Mikrothromben (peripherer Verbrauch) oder massive Thrombosen zurückgeführt werden. Die beobachtete massive Bildung von Thromben erfolgt auf Grund einer Covid-19 induzierten Hyperaktivierung von Thrombozyten. Verschiedene Faktoren können Thrombozyten während einer Covid-19 Infektion aktivieren, dazu zählen Hypoxie, Gefäßschäden, Entzündungsmarker, NETosis, direkte SARS-CoV-2 Interaktionen, Autoimmunreaktionen sowie eine autokrine Aktivierung. Zudem verändert Covid-19 die Chemokin- und Zytokin-Konzentrationen im Blutplasma. Auch das Chemokin Profil von Thrombozyten ist in Covid-19 Patienten verändert und trägt stark zu dem in schwer kranken Patienten beobachteten Chemokinsturm bei.



Publication History

Received: 22 June 2021

Accepted: 11 August 2021

Article published online:
25 October 2021

© 2021. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Wang T, Chen R, Liu C. et al. Attention should be paid to venous thromboembolism prophylaxis in the management of COVID-19. Lancet Haematol 2020; 7 (05) e362-e363
  • 2 Grobler C, Maphumulo SC, Grobbelaar LM. et al. COVID-19: the rollercoaster of fibrin(ogen), D-dimer, Von Willebrand factor, P-selectin and their interactions with endothelial cells, platelets and erythrocytes. Int J Mol Sci 2020; 21 (14) E5168
  • 3 Zaid Y, Puhm F, Allaeys I. et al. Platelets can associate with SARS-CoV-2 RNA and are hyperactivated in COVID-19. Circ Res 2020; 127 (11) 1404-1418
  • 4 Al-Samkari H, Karp Leaf RS, Dzik WH. et al. COVID-19 and coagulation: bleeding and thrombotic manifestations of SARS-CoV-2 infection. Blood 2020; 136 (04) 489-500
  • 5 Rath D, Petersen-Uribe Á, Avdiu A. et al. Impaired cardiac function is associated with mortality in patients with acute COVID-19 infection. Clin Res Cardiol 2020; 109 (12) 1491-1499
  • 6 Mueller KAL, Langnau C, Günter M. et al. Numbers and phenotype of non-classical CD14DIMCD16+ monocytes are predictors of adverse clinical outcome in patients with coronary artery disease and severe SARS-CoV-2 infection. Cardiovasc Res 2021; 117 (01) 224-239
  • 7 Koupenova M, Clancy L, Corkrey HA, Freedman JE. Circulating platelets as mediators of immunity, inflammation, and thrombosis. Circ Res 2018; 122 (02) 337-351
  • 8 Huang C, Wang Y, Li X. et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020; 395 (10223): 497-506
  • 9 Young BE, Ong SWX, Kalimuddin S. et al; Singapore 2019 Novel Coronavirus Outbreak Research Team. Epidemiologic features and clinical course of patients infected with SARS-CoV-2 in Singapore. JAMA 2020; 323 (15) 1488-1494
  • 10 Wang W, Xu Y, Gao R. et al. Detection of SARS-CoV-2 in different types of clinical specimens. JAMA 2020; 323 (18) 1843-1844
  • 11 Zhang S, Liu Y, Wang X. et al. SARS-CoV-2 binds platelet ACE2 to enhance thrombosis in COVID-19. J Hematol Oncol 2020; 13 (01) 120
  • 12 Campbell RA, Boilard E, Rondina MT. Is there a role for the ACE2 receptor in SARS-CoV-2 interactions with platelets?. J Thromb Haemost 2021; 19 (01) 46-50
  • 13 Bury L, Camilloni B, Castronari R. et al. Search for SARS-CoV-2 RNA in platelets from COVID-19 patients. Platelets 2021; 32 (02) 284-287
  • 14 Clarke NE, Turner AJ. Angiotensin-converting enzyme 2: the first decade. Int J Hypertens 2012; 2012: 307315
  • 15 Datta PK, Liu F, Fischer T, Rappaport J, Qin X. SARS-CoV-2 pandemic and research gaps: understanding SARS-CoV-2 interaction with the ACE2 receptor and implications for therapy. Theranostics 2020; 10 (16) 7448-7464
  • 16 Abassi Z, Knaney Y, Karram T, Heyman SN. The lung macrophage in SARS-CoV-2 infection: a friend or a foe?. Front Immunol 2020; 11: 1312
  • 17 Manne BK, Denorme F, Middleton EA. et al. Platelet gene expression and function in patients with COVID-19. Blood 2020; 136 (11) 1317-1329
  • 18 Gu SX, Tyagi T, Jain K. et al. Thrombocytopathy and endotheliopathy: crucial contributors to COVID-19 thromboinflammation. Nat Rev Cardiol 2021; 18 (03) 194-209
  • 19 Makowski L, Olson-Sidford W, W-Weisel J. Biological and clinical consequences of integrin binding via a rogue RGD motif in the SARS CoV-2 spike protein. Viruses 2021; 13 (02) 146
  • 20 Sigrist CJ, Bridge A, Le Mercier P. A potential role for integrins in host cell entry by SARS-CoV-2. Antiviral Res 2020; 177: 104759
  • 21 Shen S, Zhang J, Fang Y. et al. SARS-CoV-2 interacts with platelets and megakaryocytes via ACE2-independent mechanism. J Hematol Oncol 2021; 14 (01) 72
  • 22 Coutard B, Valle C, de Lamballerie X, Canard B, Seidah NG, Decroly E. The spike glycoprotein of the new coronavirus 2019-nCoV contains a furin-like cleavage site absent in CoV of the same clade. Antiviral Res 2020; 176: 104742
  • 23 Hoffmann M, Kleine-Weber H, Schroeder S. et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell 2020; 181 (02) 271-280.e8
  • 24 Walls AC, Park YJ, Tortorici MA, Wall A, McGuire AT, Veesler D. Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell 2020; 183 (06) 1735
  • 25 Shang J, Wan Y, Luo C. et al. Cell entry mechanisms of SARS-CoV-2. Proc Natl Acad Sci U S A 2020; 117 (21) 11727-11734
  • 26 Nakayama K. Furin: a mammalian subtilisin/Kex2p-like endoprotease involved in processing of a wide variety of precursor proteins. Biochem J 1997; 327 (Pt 3): 625-635
  • 27 Wang YK, Tang JN, Han L. et al. Elevated FURIN levels in predicting mortality and cardiovascular events in patients with acute myocardial infarction. Metabolism 2020; 111: 154323
  • 28 Langnau C, Rohlfing AK, Gekeler S. et al. Platelet activation and plasma levels of furin are associated with prognosis of patients with coronary artery disease and COVID-19. Arterioscler Thromb Vasc Biol 2021; 41 (06) 2080-2096
  • 29 Bikdeli B, Madhavan MV, Jimenez D. et al; Global COVID-19 Thrombosis Collaborative Group, Endorsed by the ISTH, NATF, ESVM, and the IUA, Supported by the ESC Working Group on Pulmonary Circulation and Right Ventricular Function. COVID-19 and thrombotic or thromboembolic disease: implications for prevention, antithrombotic therapy, and follow-up: JACC state-of-the-art review. J Am Coll Cardiol 2020; 75 (23) 2950-2973
  • 30 Bi X, Su Z, Yan H. et al. Prediction of severe illness due to COVID-19 based on an analysis of initial fibrinogen to albumin ratio and platelet count. Platelets 2020; 31 (05) 674-679
  • 31 Alnor A, Sandberg MB, Toftanes BE, Vinholt PJ. Platelet parameters and leukocyte morphology is altered in COVID-19 patients compared to non-COVID-19 patients with similar symptomatology. Scand J Clin Lab Invest 2021; 81 (03) 213-217
  • 32 Boeckh-Behrens T, Golkowski D, Ikenberg B. et al. COVID-19-associated large vessel stroke in a 28-year-old patient: NETs and platelets possible key players in acute thrombus formation. Clin Neuroradiol 2021; 31 (02) 511-514
  • 33 Althaus K, Marini I, Zlamal J. et al. Antibody-induced procoagulant platelets in severe COVID-19 infection. Blood 2021; 137 (08) 1061-1071
  • 34 Saleh J, Peyssonnaux C, Singh KK, Edeas M. Mitochondria and microbiota dysfunction in COVID-19 pathogenesis. Mitochondrion 2020; 54: 1-7
  • 35 Guzik TJ, Mohiddin SA, Dimarco A. et al. COVID-19 and the cardiovascular system: implications for risk assessment, diagnosis, and treatment options. Cardiovasc Res 2020; 116 (10) 1666-1687
  • 36 Connors JM, Levy JH. COVID-19 and its implications for thrombosis and anticoagulation. Blood 2020; 135 (23) 2033-2040
  • 37 Dib PRB, Quirino-Teixeira AC, Merij LB. et al. Innate immune receptors in platelets and platelet-leukocyte interactions. J Leukoc Biol 2020; 108 (04) 1157-1182
  • 38 Lê VB, Schneider JG, Boergeling Y. et al. Platelet activation and aggregation promote lung inflammation and influenza virus pathogenesis. Am J Respir Crit Care Med 2015; 191 (07) 804-819
  • 39 Bongiovanni D, Klug M, Lazareva O. et al. SARS-CoV-2 infection is associated with a pro-thrombotic platelet phenotype. Cell Death Dis 2021; 12 (01) 50
  • 40 Colling ME, Kanthi Y. COVID-19-associated coagulopathy: an exploration of mechanisms. Vasc Med 2020; 25 (05) 471-478
  • 41 Zaid Y, Guessous F, Puhm F. et al. Platelet reactivity to thrombin differs between patients with COVID-19 and those with ARDS unrelated to COVID-19. Blood Adv 2021; 5 (03) 635-639
  • 42 Bonaventura A, Vecchié A, Dagna L. et al. Endothelial dysfunction and immunothrombosis as key pathogenic mechanisms in COVID-19. Nat Rev Immunol 2021; 21 (05) 319-329
  • 43 Ackermann M, Verleden SE, Kuehnel M. et al. Pulmonary vascular endothelialitis, thrombosis, and angiogenesis in COVID-19. N Engl J Med 2020; 383 (02) 120-128
  • 44 Gawaz M, Langer H, May AE. Platelets in inflammation and atherogenesis. J Clin Invest 2005; 115 (12) 3378-3384
  • 45 Gawaz M. Role of platelets in coronary thrombosis and reperfusion of ischemic myocardium. Cardiovasc Res 2004; 61 (03) 498-511
  • 46 Nicolai L, Leunig A, Brambs S. et al. Immunothrombotic dysregulation in COVID-19 pneumonia is associated with respiratory failure and coagulopathy. Circulation 2020; 142 (12) 1176-1189
  • 47 Ruberto F, Chistolini A, Curreli M. et al; Policlinico Umberto I COVID-19 Group. Von Willebrand factor with increased binding capacity is associated with reduced platelet aggregation but enhanced agglutination in COVID-19 patients: another COVID-19 paradox?. J Thromb Thrombolysis 2021; 52 (01) 105-110
  • 48 Middleton EA, He XY, Denorme F. et al. Neutrophil extracellular traps contribute to immunothrombosis in COVID-19 acute respiratory distress syndrome. Blood 2020; 136 (10) 1169-1179
  • 49 Cappellano G, Raineri D, Rolla R. et al. Circulating platelet-derived extracellular vesicles are a hallmark of SARS-CoV-2 infection. Cells 2021; 10 (01) E85
  • 50 Hottz ED, Azevedo-Quintanilha IG, Palhinha L. et al. Platelet activation and platelet-monocyte aggregate formation trigger tissue factor expression in patients with severe COVID-19. Blood 2020; 136 (11) 1330-1341