Synthesis 2022; 54(02): 255-270
DOI: 10.1055/a-1588-9763
short review

Strategies for the Synthesis of Selenocysteine Derivatives

Paula Oroz
,
Alberto Avenoza
,
Jesús H. Busto
,
Francisco Corzana
,
María M. Zurbano
,
We thank the Agencia Estatal Investigación of Spain (AEI; Grant RTI2018-099592-B-C21) and the EU (Marie-Sklodowska Curie ITN, DIRNANO, Grant Agreement No. 956544). P.O. thanks Universidad de La Rioja for a Ph.D. fellowship.


Abstract

β-Seleno-α-amino acids, known as selenocysteine (Sec) derivatives, have emerged as important targets because of their role in chemical biology, not only as part of selenoproteins with important redox properties, but also because of their activity as antivirals or metabolites effective in inhibiting carcinogenesis. In addition, there is demand for this type of compounds due to their use in native chemical ligation to construct large peptides. Therefore, this review summarizes the various synthetic methods that have been published to construct Sec derivatives. Most of them involve the generation of the C–Se bond by nucleophilic substitution reactions, but other reactions such as radical or multicomponent strategies are also reported. Of particular importance is the Se-Michael addition of Se-nucleophiles to chiral bicyclic dehydroalanines, in which the stereogenic center is generated under complete stereocontrol.

1 Introduction

2 Previously Reviewed Synthesis of Sec

3 Retrosynthesis of Sec Derivatives

4 Sec Derivatives by Nucleophilic Substitutions

5 Sec Derivatives by Radical Processes

6 Sec Derivatives by 1,4-Conjugate Additions

7 Conclusion



Publication History

Received: 16 June 2021

Accepted after revision: 16 August 2021

Accepted Manuscript online:
16 August 2021

Article published online:
06 October 2021

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Metanis N, Hilvert D. Curr. Opin. Chem. Biol. 2014; 22: 27
    • 1b Thyer R, Filipovska A, Rackham O. J. Am. Chem. Soc. 2013; 135: 2
    • 1c Mousa R, Notis Dardashti R, Metanis N. Angew. Chem. Int. Ed. 2017; 56: 15818
    • 2a Dadova J, Galan SR. G, Davis BG. Curr. Opin. Chem. Biol. 2018; 46: 71
    • 2b Arnér ES. J. Essays Biochem. 2020; 64: 45
    • 3a McGrath NA, Raines RT. Acc. Chem. Res. 2011; 44: 752
    • 3b Dery S, Reddy PS, Dery L, Mousa R, Dardashti RN, Metanis N. Chem. Sci. 2015; 6: 6207
    • 3c Durek T, Alewood PF. Angew. Chem. Int. Ed. 2011; 50: 12042
    • 3d Mitchell NJ, Kulkarni SS, Malin LR, Wang S, Payne RJ. Chem. Eur. J. 2017; 23: 946
    • 3e Cohen DT, Zhang C, Pentelute BL, Buchwald SL. J. Am. Chem. Soc. 2015; 137: 9784
    • 3f Metanis N, Hilvert D. Chem. Sci. 2015; 6: 322
    • 4a Wessjohann LA, Schneider A. Chem. Biodiversity 2008; 5: 375
    • 4b Iwaoka M, Ooka R, Nakazato T, Yoshida S, Oishi S. Chem. Biodiversity 2008; 5: 359
    • 4c Muttenthaler M, Alewood PF. J. Pept. Sci. 2008; 14: 1223
    • 6a Moroder L. J. Pept. Sci. 2005; 11: 187
    • 6b Fiori S, Pegoraro S, Rudolph-Böhner S, Cramer J, Moroder L. Biopolymers 2000; 53: 550
    • 6c Theodoropulos D, Schwartz IL, Walter R. Tetrahedron Lett. 1967; 8: 2411
  • 7 Chocat P, Esaki N, Tanaka H, Soda K. Anal. Biochem. 1985; 148: 485
  • 8 Gieselman MD, Xie LL, van der Donk WA. Org. Lett. 2001; 3: 1331
  • 9 Iwaoka M, Haraki C, Ooka R, Miyamoto M, Sugiyama A, Kohara Y, Isozumi N. Tetrahedron Lett. 2006; 47: 3861
  • 10 Chocat P, Esaki N, Tanaka H, Soda K. Agric. Biol. Chem. 1985; 49: 1143
  • 11 Barton DH. R, Bridon D, Herve Y, Potier P, Thierry J, Zard SZ. Tetrahedron 1986; 42: 4983
  • 12 Reich HJ, Jasperse CP, Renga JM. J. Org. Chem. 1986; 51: 2981
    • 13a Abbas M, Bethke J, Wessjohann LA. Chem. Commun. 2006; 541
    • 13b Abbas M, Bethke J, Wessjohann LA. Org. Biomol. Chem. 2012; 10: 9330
    • 14a Rayman MP. Lancet 2000; 356: 233
    • 14b Finley JW, Davis CD, Feng Y. J. Nutr. 2000; 130: 2384
    • 14c Ip C, Zhu Z, Thompson HJ, Lisk D, Ganther HE. Anticancer Res. 1999; 19: 2875
  • 15 Block E, Birringer M, Jiang W, Nakahodo T, Thompson HJ, Toscano PJ, Uzar H, Zhang X, Zhu Z. J. Agric. Food Chem. 2001; 49: 458
  • 16 Braga AL, Wessjohann LA, Taube PS, Galetto FZ, de Andrade FM. Synthesis 2010; 3131
  • 17 Kawai Y, Ando H, Ozeki H, Koketsu M, Ishihara H. Org. Lett. 2005; 7: 4653
  • 18 Shimodaira S, Iwaoka M. ARKIVOC 2017; (ii): 260
  • 19 Baig NB. R, Chandrakala RN, Sudhir VS, Chandrasekaran S. J. Org. Chem. 2010; 75: 2910
  • 20 Venkateswarlu C, Datta B, Chandrasekaran S. RSC Adv. 2014; 4: 42952
  • 21 Liu J, Zheng F, Cheng R, Li S, Rozovsky S, Wang Q, Wang L. J. Am. Chem. Soc. 2018; 140: 8807
  • 22 Commandeur JN. M, Andreadou I, Rooseboom M, Out M, de Leur LJ, Groot E, Vermeulen NP. E. J. Pharmacol. Exp. Ther. 2000; 294: 753
  • 23 Lin YA, Chalker JM, Davis BG. J. Am. Chem. Soc. 2010; 132: 16805
  • 24 Ip C, Thompson HJ, Zhu Z, Ganther HE. Cancer Res. 2000; 60: 2882
  • 25 Xie Y, Short MD, Cassidy PB, Roberts JC. Bioorg. Med. Chem. Lett. 2001; 11: 2911
  • 26 Williamson JM, Boettcher B, Meister A. Proc. Natl. Acad. Sci. U. S. A. 1982; 79: 6246
  • 27 Knerr PJ, van der Donk WA. Annu. Rev. Biochem. 2012; 81: 479
    • 28a Zdansky G. Ark. Kemi 1966; 26: 213
    • 28b Zdansky G. Ark. Kemi 1968; 29: 443
    • 28c Roy J, Gordon W, Schwartz IL, Walter R. J. Org. Chem. 1970; 35: 510
  • 29 Hanus J, Benes J, Kozel J. Radiochem. Radioanal. Lett. 1975; 23: 33
  • 30 Borbála Both E, Shao S, Xiang J, Jókai Z, Yin H, Liu Y, Magyar A, Dernovics M. Biochim. Biophys. Acta, Gen. Subj. 2018; 1862: 2354
  • 31 de Araujo AD, Mobli M, King GF, Alewood PF. Angew. Chem. Int. Ed. 2012; 51: 10298
    • 32a Yang HY, Erdos EG, Levin Y. Biochim. Biophys. Acta 1970; 214: 374
    • 32b Bhuyan BJ, Mugesh G. Org. Biomol. Chem. 2011; 9: 1356
  • 33 Bhuyan BJ, Mugesh G. Org. Biomol. Chem. 2011; 9: 5185
  • 34 Bhuyan BJ, Mugesh G. Org. Biomol. Chem. 2012; 10: 2237
  • 35 Reddy KM, Mugesh G. Chem. Eur. J. 2019; 25: 8875
  • 36 Muttenthaler M, Ramos YG, Feytens D, de Araujo AD, Alewood PF. Biopolymers 2010; 94: 423
  • 37 Flemer SJr. Molecules 2011; 16: 3232
  • 38 Schroll AL, Hondal RJ, Flemer SJr. J. Pept. Sci. 2012; 18: 155
  • 39 Nicolaou KC, Estrada AA, Zak M, Lee SH, Safina BS. Angew. Chem. Int. Ed. 2005; 44: 1378
  • 40 Schroll AL, Hondal RJ, Flemer S. J. Pept. Sci. 2012; 18: 1
  • 41 Flemer S. Protein Pept. Lett. 2014; 21: 1257
  • 42 Flemer SJr. J. Pept. Sci. 2015; 21: 53
  • 43 Santi S, Santoro S, Testaferri L, Tiecco M. Synlett 2008; 1471
    • 44a Iwaoka M, Ito S, Miyazaki I, Michibata M. Proc. Indian Natl. Sci. Acad., Part A 2016; 86: 499
    • 44b Makiyama A, Komatsu I, Iwaoka M, Yatagai M. Phosphorus, Sulfur Silicon Relat. Elem. 2011; 186: 125
  • 45 Wehrle RJ, Ste Marie EJ, Hondal RJ, Masterson DS. J. Pept. Sci. 2019; 25: e3173
    • 46a Zhou G, Deng X, Tian J, Goh ET. L, Turabe Fazil MH. U, Lakshminarayanan R, Srinivasan R. Chem. Commun. 2020; 56: 1780
    • 46b Zhou G, Deng X, Pan C, Goh ET. L, Lakshminarayanan R, Srinivasan R. Chem. Commun. 2020; 56: 12546
  • 47 Panguluri NR, Panduranga V, Prabhu G, Vishwanatha TM, Sureshbabu VV. RSC Adv. 2015; 5: 51807
  • 48 Malins LR, Payne RJ. Org. Lett. 2012; 14: 3142
  • 49 Wang X, Corcilius L, Premdjee B, Payne RJ. J. Org. Chem. 2020; 85: 1567
  • 50 Mitchell NJ, Sayers J, Kulkarni SS, Clayton D, Goldys AM, Ripoll-Rozada J, Pereira PJ. B, Chan B, Radom L, Payne RJ. Chem 2017; 2: 703
    • 51a Zhou H, van der Donk WA. Org. Lett. 2002; 4: 1335
    • 51b Zhu Y, Gieselman MD, Zhou H, Averin O, van der Donk WA. Org. Biomol. Chem. 2003; 1: 3304
    • 51c Levengood MR, van der Donk WA. Nat. Protoc. 2006; 1: 3001
    • 51d Gieselman MD, Zhu Y, Zhou H, Galonic D, van der Donk WA. ChemBioChem 2002; 3: 709
  • 52 Khan MS. K, Asaduzzaman AMd, Schreckenbach G, Wang F. Dalton Trans. 2009; 5766
  • 53 Compañón I, Guerreiro A, Mangini V, Castro-López J, Escudero-Casao M, Avenoza A, Busto JH, Castillón S, Jiménez-Barbero J, Asensio JL, Jiménez-Osés G, Boutureira O, Peregrina JM, Hurtado-Guerrero R, Fiammengo R, Bernardes GJ. L, Corzana F. J. Am. Chem. Soc. 2019; 141: 4063
  • 54 Jobron L, Hummel G. Org. Lett. 2000; 2: 2265
  • 55 Zhu F, O’Neill S, Rodriguez J, Walczak MA. Angew. Chem. Int. Ed. 2018; 57: 7091
  • 56 Jiang M, Yang H, Fu H. Org. Lett. 2016; 18: 1968
  • 57 Yin H, Zheng M, Chen H, Wang S, Zhou Q, Zhang Q, Wang P. J. Am. Chem. Soc. 2020; 142: 14201
    • 58a Aydillo C, Avenoza A, Busto JH, Jiménez-Osés G, Peregrina JM, Zurbano MM. Org. Lett. 2012; 14: 334
    • 58b Aydillo C, Compañón I, Avenoza A, Busto JH, Corzana F, Peregrina JM, Zurbano MM. J. Am. Chem. Soc. 2014; 136: 789
    • 58c Gutiérrez-Jiménez MI, Aydillo C, Navo CD, Avenoza A, Corzana F, Jiménez-Osés G, Zurbano MM, Busto JH, Peregrina JM. Org. Lett. 2016; 18: 2796
    • 58d Navo CD, Asín A, Gómez-Orte E, Gutiérrez-Jiménez MI, Compañón I, Ezcurra B, Avenoza A, Busto JH, Corzana F, Zurbano MM, Jiménez-Osés G, Cabello J, Peregrina JM. Chem. Eur. J. 2018; 24: 7991
    • 58e Navo CD, Mazo N, Oroz P, Gutiérrez-Jiménez MI, Marín J, Asenjo J, Avenoza A, Busto JH, Corzana F, Zurbano MM, Jiménez-Osés G, Peregrina JM. J. Org. Chem. 2020; 85: 3134
  • 59 Lin YA, Boutureira O, Lercher L, Bhushan B, Paton RS, Davis BG. J. Am. Chem. Soc. 2013; 135: 12156
  • 60 Nacca FG, Monti B, Lenardão EJ, Evans P, Santi C. Molecules 2020; 25: 2018