Exp Clin Endocrinol Diabetes 2022; 130(S 01): S151-S184
DOI: 10.1055/a-1624-5095
German Diabetes Association: Clinical Practice Guidelines

Dietary recommendations for persons with type 2 diabetes mellitus

Thomas Skurk
1   ZIEL Institute for Food & Health, Technical University of Munich, Freising, Germany
2   Else Kröner-Fresenius-Center for Nutritional Medicine, Technical University of Munich, Freising, Germany
,
Anja Bosy-Westphal
3   Institute for Human Nutrition, Faculty of Agricultural and Nutritional Sciences, Christian-Albrechts-University of Kiel, Kiel, Germany
,
Arthur Grünerbel
4   Diabetes Center Munich South, Munich, Germany
,
Stefan Kabisch
5   German Institute of Human Nutrition Potsdam-Rehbrücke, Potsdam, Germany
6   Department of Endocrinology, Diabetes and Nutritional Medicine, Charité Universitätsmedizin Berlin, Berlin, Germany
7   German Center for Diabetes Research (DZD), Munich, Germany
,
Winfried Keuthage
8   Focus Practice for Diabetes and Nutritional Medicine, Münster, Germany
,
Peter Kronsbein
9   Department of Ecotrophology, Niederrhein University of Applied Sciences, Mönchengladbach Campus, Germany
,
Karsten Müssig
10   Department of Internal Medicine, Gastroenterology and Diabetology, Niels Stensen Hospitals, Franziskus Hospital Harderberg, Georgsmarienhütte, Germany
,
Andreas F.H. Pfeiffer
6   Department of Endocrinology, Diabetes and Nutritional Medicine, Charité Universitätsmedizin Berlin, Berlin, Germany
,
Marie-Christine Simon
11   Institute of Nutrition and Food Sciences, Rheinische Friedrich-Wilhelms University, Bonn, Germany
,
Astrid Tombek
12   Diabetes Center Bad Mergentheim, Bad Mergentheim
,
Katharina S. Weber
13   Institute of Epidemiology, Christian-Albrechts-University of Kiel, Kiel, Germany
,
Diana Rubin
14   Vivantes Hospital Spandau, Berlin, Germany
15   Vivantes Humboldt Hospital, Berlin, Germany
› Author Affiliations

Preface

This practice guideline is aimed at all professional groups caring for people with type 2 diabetes mellitus (T2Dm). In addition to the multifaceted aspects of nutrition in diabetes, there is a particular call for individualization of therapy, counseling, empowerment, and diabetes self-management [1] [2] [3]. Therefore, the Nutrition Committee of the DDG has set the goal to compile practice guidelines on nutrition as target group-specific as possible with the highest available evidence. In doing so, it is considered necessary to treatment forms separately presentation since the therapeutic significance of nutrition differs significantly in each case and must be seen against the background of different drug therapy components.

T2Dm is characterized by a progressive course in terms of β-cell insufficiency, which progresses at different rates in different individuals [4] [5] [6] [7]. Against this background, patients with T2Dm have both quite different characteristics and treatment regimens [8].

For patients with special life circumstances, e. g., sarcopenia and need for long-term care, diets must be designed taking strong consideration of personal preferences and with an emphasis on meeting protein requirements.

Overall, as a result, nutritional therapy needs to be highly individualized to realize its full potential.

The option of individualized nutritional counseling, including via telemedicine, should therefore be used more widely and intensively in people with T2Dm. The general goals are to promote balanced eating habits, provide training on appropriate portion sizes, and address individual dietary needs while maintaining enjoyment of food and providing practical tools for meal planning. Individualized nutrition counseling sessions include evidence-based topics that should be provided by qualified and appropriately certified nutrition professionals (dietitian, nutritionist or ecotrophologist).

The nutritional therapy plan must also be coordinated and continuously aligned with the overall management strategy, including medications administered, physical activity, etc.

In addition, people with prediabetes and excess weight/obesity should be referred to an intensive lifestyle intervention program that includes individualized goal-setting components, as defined, for example, by the S3 Guideline Prevention and Therapy of Obesity (S3-Leitlinie Prävention und Therapie der Adipositas). Since this service is not yet a standard benefit of the statutory health insurance, at minimum individualized nutrition counseling should be provided with partial cost coverage according to § 43 German Social Security Code (SGB).

Another important recommendation is the referral of adults with diabetes to comprehensive diabetes self-management training and support (Diabetes-Selbstmanagementschulung und -unterstützung - DSMES) according to national standards.

This practice guideline represents the summary and evaluation of the literature by the Nutrition Committee of the DDG on selected nutritional aspects in the management of T2Dm. Regular updating and, if necessary, supplementation is planned. In doing so, the evidence - if available - was assessed in the context of literature research based on systematic reviews or meta-analyses. Original papers were also used for topics without the availability of such reviews.



Publication History

Article published online:
31 March 2022

© 2022. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Beck J, Greenwood DA, Blanton L. et al. 2017 National Standards for Diabetes Self-Management Education and Support. Diabetes care 2017; 40: 1409-1419 DOI: 10.2337/dci17-0025.
  • 2 Evert AB, Dennison M, Gardner CD. et al. Nutrition Therapy for Adults With Diabetes or Prediabetes: A Consensus Report. Diabetes care 2019; 42: 731-754 DOI: 10.2337/dci19-0014.
  • 3 https://www.deutsche-diabetes-gesellschaft.de/politik/stellungnahmen/stellungnahme-des-ausschuss-ernaehrung-der-ddg-zum-consensusreport-nutrition-therapy-for-adults-with-diabetes-or-prediabetes Ausschuss Ernährung der DDG. Stellungnahme des Ausschuss Ernährung der DDG zum Consensus Report: Nutrition Therapy for Adults with Diabetes or Prediabetes: [Evert AB et al. Diabetes Care 2019;42:731-54.] 2019
  • 4 DeFronzo RA, Bonadonna RC, Ferrannini E. Pathogenesis of NIDDM. A balanced overview. Diabetes care 1992; 15: 318-368 DOI: 10.2337/diacare.15.3.318.
  • 5 DeFronzo RA, Eldor R, Abdul-Ghani M. Pathophysiologic approach to therapy in patients with newly diagnosed type 2 diabetes. Diabetes care 2013; 36: S127-S138 DOI: 10.2337/dcS13-2011.
  • 6 Lencioni C, Lupi R, Del Prato S. Beta-cell failure in type 2 diabetes mellitus. Curr Diab Rep 2008; 8: 179-184 DOI: 10.1007/s11892-008-0031-0.
  • 7 [Anonymous]. U.K. prospective diabetes study 16. Overview of 6 years’ therapy of type II diabetes: a progressive disease. U.K. Prospective Diabetes Study Group. Diabetes 1995; 44: 1249-1258
  • 8 Zaharia OP, Strassburger K, Strom A. et al. Risk of diabetes-associated diseases in subgroups of patients with recent-onset diabetes: a 5-year follow-up study. Lancet Diabetes Endocrinol 2019; 7: 684-694 DOI: 10.1016/S2213-8587(19)30187-1.
  • 9 Kodama S, Horikawa C, Fujihara K. et al. Quantitative relationship between body weight gain in adulthood and incident type 2 diabetes: a meta-analysis. Obes Rev 2014; 15: 202-214 DOI: 10.1111/obr.12129.
  • 10 Wing RR, Lang W, Wadden TA. et al. Benefits of modest weight loss in improving cardiovascular risk factors in overweight and obese individuals with type 2 diabetes. Diabetes care 2011; 34: 1481-1486 DOI: 10.2337/dc10-2415.
  • 11 Steven S, Hollingsworth KG, Al-Mrabeh A. et al. Very Low-Calorie Diet and 6 Months of Weight Stability in Type 2 Diabetes: Pathophysiological Changes in Responders and Nonresponders. Diabetes care 2016; 39: 808-815 DOI: 10.2337/dc15-1942.
  • 12 Jazet IM, Pijl H, Frölich M. et al. Factors predicting the blood glucose lowering effect of a 30-day very low calorie diet in obese Type 2 diabetic patients. Diabetic medicine: a journal of the British Diabetic Association 2005; 22: 52-55 DOI: 10.1111/j.1464-5491.2004.01357.x.
  • 13 Lean MEJ, Leslie WS, Barnes AC. et al. Primary care-led weight management for remission of type 2 diabetes (DiRECT): an open-label, clusterrandomised trial. The Lancet 2018; 391: 541-551 DOI: 10.1016/S0140-6736(17)33102-1.
  • 14 Bangalore S, Fayyad R, DeMicco DA. et al. Body Weight Variability and Cardiovascular Outcomes in Patients With Type 2 Diabetes Mellitus. Circ Cardiovasc Qual Outcomes 2018; 11: e004724 DOI: 10.1161/CIRCOUT-COMES.118.004724.
  • 15 Yeboah P, Hsu FC, Bertoni AG. et al. Body Mass Index, Change in Weight, Body Weight Variability and Outcomes in Type 2 Diabetes Mellitus (from the ACCORD Trial). The American journal of cardiology 2019; 123: 576-581 DOI: 10.1016/j.amjcard.2018.11.016.
  • 16 Pagidipati NJ, Zheng Y, Green JB. et al. Association of obesity with cardiovascular outcomes in patients with type 2 diabetes and cardiovascular disease: Insights from TECOS. Am Heart J 2020; 219: 47-57 DOI: 10.1016/j.ahj.2019.09.016.
  • 17 Bodegard J, Sundström J, Svennblad B. et al. Changes in body mass index following newly diagnosed type 2 diabetes and risk of cardiovascular mortality: a cohort study of 8486 primary-care patients. Diabetes Metab 2013; 39: 306-313 DOI: 10.1016/j.diabet.2013.05.004.
  • 18 Weinheimer EM, Sands LP, Campbell WW. A systematic review of the separate and combined effects of energy restriction and exercise on fatfree mass in middle-aged and older adults: implications for sarcopenic obesity. Nutr Rev 2010; 68: 375-388 DOI: 10.1111/j.1753-4887.2010.00298.x.
  • 19 Zaccardi F, Dhalwani NN, Papamargaritis D. et al. Nonlinear association of BMI with all-cause and cardiovascular mortality in type 2 diabetes mellitus: a systematic review and meta-analysis of 414587 participants in prospective studies. Diabetologia 2017; 60: 240-248 DOI: 10.1007/s00125-016-4162-6.
  • 20 Salehidoost R, Mansouri A, Amini M. et al. Body mass index and the all-cause mortality rate in patients with type 2 diabetes mellitus. Acta Diabetol 2018; 55: 569-577 DOI: 10.1007/s00592-018-1126-y.
  • 21 Hainer V, Aldhoon-Hainerová I. Obesity paradox does exist. Diabetes care 2013; 36: S276-S281 DOI: 10.2337/dcS13-2023.
  • 22 Murphy RA, Reinders I, Garcia ME. et al. Adipose tissue, muscle, and function: potential mediators of associations between body weight and mortality in older adults with type 2 diabetes. Diabetes care 2014; 37: 3213-3219 DOI: 10.2337/dc14-0293.
  • 23 Bales CW, Porter Starr KN. Obesity Interventions for Older Adults: Diet as a Determinant of Physical Function. Adv Nutr 2018; 9: 151-159 DOI: 10.1093/advances/nmx016.
  • 24 Uusitupa M, Khan TA, Viguiliouk E. et al. Prevention of Type 2 Diabetes by Lifestyle Changes: A Systematic Review and Meta-Analysis. Nutrients 2019; 11 DOI: 10.3390/nu11112611.
  • 25 Raben A, Vestentoft PS, Brand-Miller J. et al. The PREVIEW intervention study: Results from a 3-year randomized 2 × 2 factorial multinational trial investigating the role of protein, glycaemic index and physical activity for prevention of type 2 diabetes. Diabetes Obes Metab 2021; 23: 324-337 DOI: 10.1111/dom.14219.
  • 26 Gregg EW, Chen H, Wagenknecht LE. et al. Association of an intensive lifestyle intervention with remission of type 2 diabetes. JAMA 2012; 308: 2489-2496 DOI: 10.1001/jama.2012.67929.
  • 27 Anderson JW, Konz EC, Frederich RC. et al. Long-term weight-loss maintenance: a meta-analysis of US studies. Am J Clin Nutr 2001; 74: 579-584 DOI: 10.1093/ajcn/74.5.579.
  • 28 Bundesgesundheitsministerium 2015. Telemedizin. Im Internet (Stand: 09.04.2021) https://www.bundesgesundheitsministerium.de/service/begriffe-von-a-z/t/telemedizin.html
  • 29 Su D, McBride C, Zhou J. et al. Does nutritional counseling in telemedicine improve treatment outcomes for diabetes? A systematic review and meta-analysis of results from 92 studies. J Telemed Telecare 2016; 22: 333-347 DOI: 10.1177/1357633X15608297.
  • 30 Kempf K, Altpeter B, Berger J. et al. Efficacy of the Telemedical Lifestyle intervention Program TeLiPro in Advanced Stages of Type 2 Diabetes: A Randomized Controlled Trial. Diabetes care 2017; 40: 863-871 DOI: 10.2337/dc17-0303.
  • 31 Belalcazar LM, Haffner SM, Lang W. et al. Lifestyle intervention and/or statins for the reduction of C-reactive protein in type 2 diabetes: from the look AHEAD study. Obesity (Silver Spring) 2013; 21: 944-950 DOI: 10.1002/oby.20431.
  • 32 Colquitt JL, Pickett K, Loveman E. et al. Surgery for weight loss in adults. Cochrane Database Syst Rev 2014; DOI: 10.1002/14651858.CD003641.pub4.
  • 33 Patel KV, Bahnson JL, Gaussoin SA. et al. Association of Baseline and Longitudinal Changes in Body Composition Measures With Risk of Heart Failure and Myocardial Infarction in Type 2 Diabetes: Findings From the Look AHEAD Trial. Circulation 2020; 142: 2420-2430 DOI: 10.1161/CIRCULATIONAHA.120.050941.
  • 34 Franz MJ, Boucher JL, Rutten-Ramos S. et al. Lifestyle weight-loss intervention outcomes in overweight and obese adults with type 2 diabetes: a systematic review and meta-analysis of randomized clinical trials. J Acad Nutr Diet 2015; 115: 1447-1463 DOI: 10.1016/j.jand.2015.02.031.
  • 35 Murgatroyd PR, Goldberg GR, Leahy FE. et al. Effects of inactivity and diet composition on human energy balance. Int J Obes Relat Metab Disord 1999; 23: 1269-1275 DOI: 10.1038/sj.ijo.0801062.
  • 36 Stubbs RJ, Sepp A, Hughes DA. et al. The effect of graded levels of exercise on energy intake and balance in free-living women. Int J Obes Relat Metab Disord 2002; 26: 866-869 DOI: 10.1038/sj.ijo.0801874.
  • 37 Granados K, Stephens BR, Malin SK. et al. Appetite regulation in response to sitting and energy imbalance. Appl Physiol Nutr Metab 2012; 37: 323-333 DOI: 10.1139/h2012-002.
  • 38 Hägele FA, Büsing F, Nas A. et al. Appetite Control Is Improved by Acute Increases in Energy Turnover at Different Levels of Energy Balance. J Clin Endocrinol Metab 2019; 104: 4481-4491 DOI: 10.1210/jc.2019-01164.
  • 39 Douglas JA, King JA, Clayton DJ. et al. Acute effects of exercise on appetite, ad libitum energy intake and appetite-regulatory hormones in lean and overweight/obese men and women. Int J Obes (Lond) 2017; 41: 1737-1744 DOI: 10.1038/ijo.2017.181.
  • 40 Savikj M, Zierath JR. Train like an athlete: applying exercise interventions to manage type 2 diabetes. Diabetologia 2020; 63: 1491-1499 DOI: 10.1007/s00125-020-05166-9.
  • 41 Büsing F, Hägele FA, Nas A. et al. Impact of energy turnover on the regulation of glucose homeostasis in healthy subjects. Nutr Diabetes 2019; 9: 22 DOI: 10.1038/s41387-019-0089-6.
  • 42 Larsen JJ, Dela F, Kjaer M. et al. The effect of moderate exercise on postprandial glucose homeostasis in NIDDM patients. Diabetologia 1997; 40: 447-453 DOI: 10.1007/s001250050699.
  • 43 Heden TD, Winn NC, Mari A. et al. Postdinner resistance exercise improves postprandial risk factors more effectively than predinner resistance exercise in patients with type 2 diabetes. J Appl Physiol (1985) 2015; 118: 624-634 DOI: 10.1152/japplphysiol.00917.2014.
  • 44 Reynolds AN, Mann JI, Williams S. et al. Advice to walk after meals is more effective for lowering postprandial glycaemia in type 2 diabetes mellitus than advice that does not specify timing: a randomised crossover study. Diabetologia 2016; 59: 2572-2578 DOI: 10.1007/s00125-016-4085-2.
  • 45 Gaudet-Savard T, Ferland A, Broderick TL. et al. Safety and magnitude of changes in blood glucose levels following exercise performed in the fasted and the postprandial state in men with type 2 diabetes. Eur J Cardiovasc Prev Rehabil 2007; 14: 831-836 DOI: 10.1097/HJR.0b013e3282efaf38.
  • 46 DiPietro L, Gribok A, Stevens MS. et al. Three 15-min bouts of moderate postmeal walking significantly improves 24-h glycemic control in older people at risk for impaired glucose tolerance. Diabetes care 2013; 36: 3262-3268 DOI: 10.2337/dc13-0084.
  • 47 Seidelmann SB, Claggett B, Cheng S. et al. Dietary carbohydrate intake and mortality: a prospective cohort study and meta-analysis. Lancet Public Health 2018; 3: e419-e428 DOI: 10.1016/S2468-2667(18)30135-X.
  • 48 Davies MJ, D’Alessio DA, Fradkin J. et al. Management of Hyperglycemia in Type 2 Diabetes, 2018. A Consensus Report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetes care 2018; 41: 2669-2701 DOI: 10.2337/dci18-0033.
  • 49 Schwingshackl L, Chaimani A, Hoffmann G. et al. A network meta-analysis on the comparative efficacy of different dietary approaches on glycaemic control in patients with type 2 diabetes mellitus. Eur J Epidemiol 2018; 33: 157-170 DOI: 10.1007/s10654-017-0352-x.
  • 50 Schwingshackl L, Hoffmann G, Iqbal K. et al. Food groups and intermediate disease markers: a systematic review and network meta-analysis of randomized trials. Am J Clin Nutr 2018; 108: 576-586 DOI: 10.1093/ajcn/nqy151.
  • 51 Neuenschwander M, Ballon A, Weber KS. et al. Role of diet in type 2 diabetes incidence: umbrella review of meta-analyses of prospective observational studies. BMJ 2019; 366: l2368 DOI: 10.1136/bmj.l2368.
  • 52 Ge L, Sadeghirad B, Ball GDC. et al. Comparison of dietary macronutrient patterns of 14 popular named dietary programmes for weight and cardiovascular risk factor reduction in adults: systematic review and network meta-analysis of randomised trials. BMJ 2020; 369: m696 DOI: 10.1136/bmj.m696.
  • 53 Goldenberg JZ, Day A, Brinkworth GD. et al. Efficacy and safety of low and very low carbohydrate diets for type 2 diabetes remission: systematic review and meta-analysis of published and unpublished randomized trial data. BMJ 2021; 372: m4743 DOI: 10.1136/bmj.m4743.
  • 54 Schwingshackl L, Nitschke K, Zähringer J. et al. Impact of Meal Frequency on Anthropometric Outcomes: A Systematic Review and Network Meta-Analysis of Randomized Controlled Trials. Adv Nutr 2020; 11: 1108-1122 DOI: 10.1093/advances/nmaa056.
  • 55 Della Corte KW, Perrar I, Penczynski KJ. et al. Effect of Dietary Sugar Intake on Biomarkers of Subclinical Inflammation: A Systematic Review and Meta-Analysis of Intervention Studies. Nutrients 2018; 10 DOI: 10.3390/nu10050606.
  • 56 Schwingshackl L, Chaimani A, Schwedhelm C. et al. Comparative effects of different dietary approaches on blood pressure in hypertensive and pre-hypertensive patients: A systematic review and network meta-analysis. Crit Rev Food Sci Nutr 2019; 59: 2674-2687 DOI: 10.1080/10408398.2018.1463967.
  • 57 Thom G, Messow CM, Leslie WS. et al. Predictors of type 2 diabetes remission in the Diabetes Remission Clinical Trial (DiRECT). Diabetic medicine: a journal of the British Diabetic Association 2020; e14395 DOI: 10.1111/dme.14395.
  • 58 de Souza RJ, Mente A, Maroleanu A. et al. Intake of saturated and trans unsaturated fatty acids and risk of all cause mortality, cardiovascular disease, and type 2 diabetes: systematic review and meta-analysis of observational studies. BMJ 2015; 351: h3978 DOI: 10.1136/bmj.h3978.
  • 59 Astrup A, Magkos F, Bier DM. et al. Saturated Fats and Health: A Reassessment and Proposal for Food-Based Recommendations: JACC State-of-the-Art Review. J Am Coll Cardiol 2020; 76: 844-857 DOI: 10.1016/j.jacc.2020.05.077.
  • 60 Pimpin L, Wu JHY, Haskelberg H. et al. Is Butter Back? A Systematic Review and Meta-Analysis of Butter Consumption and Risk of Cardiovascular Disease, Diabetes, and Total Mortality. PLoS One 2016; 11: e0158118 DOI: 10.1371/journal.pone.0158118.
  • 61 Benatar JR, Sidhu K, Stewart RAH. Effects of high and low fat dairy food on cardio-metabolic risk factors: a meta-analysis of randomized studies. PLoS One 2013; 8: e76480 DOI: 10.1371/journal.pone.0076480.
  • 62 Hooper L, Abdelhamid AS, Jimoh OF. et al. Effects of total fat intake on body fatness in adults. Cochrane Database Syst Rev 2020; 6: CD013636 DOI: 10.1002/14651858.CD013636.
  • 63 Hooper L, Martin N, Jimoh OF. et al. Reduction in saturated fat intake for cardiovascular disease. Cochrane Database Syst Rev 2020; 8: CD011737 DOI: 10.1002/14651858.CD011737.pub3.
  • 64 Belalcazar LM, Reboussin DM, Haffner SM. et al. A 1-year lifestyle intervention for weight loss in individuals with type 2 diabetes reduces high C-reactive protein levels and identifies metabolic predictors of change: from the Look AHEAD (Action for Health in Diabetes) study. Diabetes care 2010; 33: 2297-2303 DOI: 10.2337/dc10-0728.
  • 65 Lu M, Wan Y, Yang B. et al. Effects of low-fat compared with high-fat diet on cardiometabolic indicators in people with overweight and obesity without overt metabolic disturbance: a systematic review and metaanalysis of randomised controlled trials. Br J Nutr 2018; 119: 96-108 DOI: 10.1017/S0007114517002902.
  • 66 Wu JHY, Marklund M, Imamura F. et al. Omega-6 fatty acid biomarkers and incident type 2 diabetes: pooled analysis of individual-level data for 39 740 adults from 20 prospective cohort studies. Lancet Diabetes Endocrinol 2017; 5: 965-974 DOI: 10.1016/S2213-8587(17)30307-8.
  • 67 Li J, Guasch-Ferré M, Li Y. et al. Dietary intake and biomarkers of linoleic acid and mortality: systematic review and meta-analysis of prospective cohort studies. Am J Clin Nutr 2020; 112: 150-167 DOI: 10.1093/ajcn/nqz349.
  • 68 Pan A, Chen M, Chowdhury R. et al. α-Linolenic acid and risk of cardiovascular disease: a systematic review and meta-analysis. Am J Clin Nutr 2012; 96: 1262-1273 DOI: 10.3945/ajcn.112.044040.
  • 69 Abdelhamid AS, Martin N, Bridges C. et al. Polyunsaturated fatty acids for the primary and secondary prevention of cardiovascular disease. Cochrane Database Syst Rev 2018; 11: CD012345 DOI: 10.1002/14651858.CD012345.pub3.
  • 70 Abdelhamid AS, Brown TJ, Brainard JS. et al. Omega-3 fatty acids for the primary and secondary prevention of cardiovascular disease. Cochrane Database Syst Rev 2020; 3: CD003177 DOI: 10.1002/14651858.CD003177.pub5.
  • 71 Brown TJ, Brainard J, Song F. et al. Omega-3, omega-6, and total dietary polyunsaturated fat for prevention and treatment of type 2 diabetes mellitus: systematic review and meta-analysis of randomised controlled trials. BMJ 2019; 366: l4697 DOI: 10.1136/bmj.l4697.
  • 72 Qian F, Korat AA, Malik V. et al. Metabolic Effects of Monounsaturated Fatty Acid-Enriched Diets Compared With Carbohydrate or Polyunsaturated Fatty Acid-Enriched Diets in Patients With Type 2 Diabetes: A Systematic Review and Meta-analysis of Randomized Controlled Trials. Diabetes care 2016; 39: 1448-1457 DOI: 10.2337/dc16-0513.
  • 73 Jovanovski E, de Castro Ruiz Marques A, Li D. et al. Effect of high-carbohydrate or high-monounsaturated fatty acid diets on blood pressure: a systematic review and meta-analysis of randomized controlled trials. Nutr Rev 2019; 77: 19-31 DOI: 10.1093/nutrit/nuy040.
  • 74 Zhang YY, Liu W, Zhao TY. et al. Efficacy of Omega-3 Polyunsaturated Fatty Acids Supplementation in Managing Overweight and Obesity: A Meta-Analysis of Randomized Clinical Trials. J Nutr Health Aging 2017; 21: 187-192 DOI: 10.1007/s12603-016-0755-5.
  • 75 Lin N, Shi JJ, Li YM. et al What is the impact of n-3 PUFAs on inflammation markers in Type 2 diabetic mellitus populations?: a systematic review and meta-analysis of randomized controlled trials. Lipids Health Dis 2016; 15: 133 DOI: 10.1186/s12944-016-0303-7.
  • 76 Reis CEG, Landim KC, Nunes ACS. et al. Safety in the hypertriglyceridemia treatment with N-3 polyunsaturated fatty acids on glucose metabolism in subjects with type 2 diabetes mellitus. Nutr Hosp 2014; 31: 570-576 DOI: 10.3305/nh.2015.31.2.7845.
  • 77 Gao L, Cao J, Mao Q. et al. Influence of omega-3 polyunsaturated fatty acid-supplementation on platelet aggregation in humans: a meta-analysis of randomized controlled trials. Atherosclerosis 2013; 226: 328-334 DOI: 10.1016/j.atherosclerosis.2012.10.056.
  • 78 He XX, Wu XL, Chen RP. et al. Effectiveness of Omega-3 Polyunsaturated Fatty Acids in Non-Alcoholic Fatty Liver Disease: A Meta-Analysis of Randomized Controlled Trials. PLoS One 2016; 11: e0162368 DOI: 10.1371/journal.pone.0162368.
  • 79 Li N, Yue H, Jia M. et al. Effect of low-ratio n-6/n-3 PUFA on blood glucose: a meta-analysis. Food Funct 2019; 10: 4557-4565 DOI: 10.1039/c9fo00323a.
  • 80 Wanders AJ, Blom WAM, Zock PL. et al. Plant-derived polyunsaturated fatty acids and markers of glucose metabolism and insulin resistance: a meta-analysis of randomized controlled feeding trials. BMJ Open Diabetes Res Care 2019; 7: e000585 DOI: 10.1136/bmjdrc-2018-000585.
  • 81 Abbott KA, Burrows TL, Thota RN. et al. Do ω-3 PUFAs affect insulin resistance in a sex-specific manner? A systematic review and meta-analysis of randomized controlled trials. Am J Clin Nutr 2016; 104: 1470-1484 DOI: 10.3945/ajcn.116.138172.
  • 82 Jovanovski E, Li D, Thanh Ho HV. et al. The effect of alpha-linolenic acid on glycemic control in individuals with type 2 diabetes: A systematic review and meta-analysis of randomized controlled clinical trials. Medicine (Baltimore) 2017; 96: e6531 DOI: 10.1097/MD.0000000000006531.
  • 83 Faris MAI, Jahrami H, BaHammam A. et al. A systematic review, meta-analysis, and meta-regression of the impact of diurnal intermittent fasting during Ramadan on glucometabolic markers in healthy subjects. Diabetes Res Clin Pract 2020; 165: 108226 DOI: 10.1016/j.diabres.2020.108226.
  • 84 Mirmiran P, Bahadoran Z, Gaeini Z. et al. Effects of Ramadan intermittent fasting on lipid and lipoprotein parameters: An updated meta-analysis. Nutr Metab Cardiovasc Dis 2019; 29: 906-915 DOI: 10.1016/j.numecd.2019.05.056.
  • 85 Fernando HA, Zibellini J, Harris RA. et al. Effect of Ramadan Fasting on Weight and Body Composition in Healthy Non-Athlete Adults: A Systematic Review and Meta-Analysis. Nutrients 2019; 11 DOI: 10.3390/nu11020478.
  • 86 Horne BD, May HT, Anderson JL. et al. Usefulness of routine periodic fasting to lower risk of coronary artery disease in patients undergoing coronary angiography. The American journal of cardiology 2008; 102: 814-819 DOI: 10.1016/j.amjcard.2008.05.021.
  • 87 Horne BD, Muhlestein JB, May HT. et al. Relation of routine, periodic fasting to risk of diabetes mellitus, and coronary artery disease in patients undergoing coronary angiography. The American journal of cardiology 2012; 109: 1558-1562 DOI: 10.1016/j.amjcard.2012.01.379.
  • 88 Schwingshackl L, Zähringer J, Nitschke K. et al. Impact of intermittent energy restriction on anthropometric outcomes and intermediate disease markers in patients with overweight and obesity: systematic review and meta-analyses. Crit Rev Food Sci Nutr 2021; 61: 1293-1304 DOI: 10.1080/10408398.2020.1757616.
  • 89 Park J, Seo YG, Paek YJ. et al. Effect of alternate-day fasting on obesity and cardiometabolic risk: A systematic review and meta-analysis. Metabolism 2020; 111: 154336 DOI: 10.1016/j.metabol.2020.154336.
  • 90 Harris L, Hamilton S, Azevedo LB. et al. Intermittent fasting interventions for treatment of overweight and obesity in adults: a systematic review and meta-analysis. JBI Database System Rev Implement Rep 2018; 16: 507-547 DOI: 10.11124/JBISRIR-2016-003248.
  • 91 Seimon RV, Roekenes JA, Zibellini J. et al. Do intermittent diets provide physiological benefits over continuous diets for weight loss? A systematic review of clinical trials. Mol Cell Endocrinol 2015; 418: 153-172 DOI: 10.1016/j.mce.2015.09.014.
  • 92 Horne BD, Muhlestein JB, Anderson JL. Health effects of intermittent fasting: hormesis or harm? A systematic review. Am J Clin Nutr 2015; 102: 464-470 DOI: 10.3945/ajcn.115.109553.
  • 93 Borgundvaag E, Mak J, Kramer CK. Metabolic Impact of Intermittent Fasting in Patients With Type 2 Diabetes Mellitus: A Systematic Review and Meta-analysis of Interventional Studies. J Clin Endocrinol Metab 2021; 106: 902-911 DOI: 10.1210/clinem/dgaa926.
  • 94 Parr EB, Devlin BL, Lim KHC. et al. Time-Restricted Eating as a Nutrition Strategy for Individuals with Type 2 Diabetes: A Feasibility Study. Nutrients 2020; 12 DOI: 10.3390/nu12113228.
  • 95 Carter S, Clifton PM, Keogh JB. The effects of intermittent compared to continuous energy restriction on glycaemic control in type 2 diabetes; a pragmatic pilot trial. Diabetes Res Clin Pract 2016; 122: 106-112 DOI: 10.1016/j.diabres.2016.10.010.
  • 96 Carter S, Clifton PM, Keogh JB. The effect of intermittent compared with continuous energy restriction on glycaemic control in patients with type 2 diabetes: 24-month follow-up of a randomised noninferiority trial. Diabetes Res Clin Pract 2019; 151: 11-19 DOI: 10.1016/j.diabres.2019.03.022.
  • 97 Corley BT, Carroll RW, Hall RM. et al. Intermittent fasting in Type 2 diabetes mellitus and the risk of hypoglycaemia: a randomized controlled trial. Diabetic medicine: a journal of the British Diabetic Association 2018; 35: 588-594 DOI: 10.1111/dme.13595.
  • 98 Henry RR, Wiest-Kent TA, Scheaffer L. et al. Metabolic consequences of very-low-calorie diet therapy in obese non-insulin-dependent diabetic and nondiabetic subjects. Diabetes 1986; 35: 155-164 DOI: 10.2337/diab.35.2.155.
  • 99 Amatruda JM, Richeson JF, Welle SL. et al. The safety and efficacy of a controlled low-energy (‘very-low-calorie’) diet in the treatment of noninsulin-dependent diabetes and obesity. Arch Intern Med 1988; 148: 873-877
  • 100 Rotella CM, Cresci B, Mannucci E. et al. Short cycles of very low calorie diet in the therapy of obese type II diabetes mellitus. J Endocrinol Invest 1994; 17: 171-179 DOI: 10.1007/BF03347709.
  • 101 Dhindsa P, Scott AR, Donnelly R. Metabolic and cardiovascular effects of very-low-calorie diet therapy in obese patients with Type 2 diabetes in secondary failure: outcomes after 1 year. Diabetic medicine: a journal of the British Diabetic Association 2003; 20: 319-324 DOI: 10.1046/j.1464-5491.2003.00937.x.
  • 102 Lean MEJ, Leslie WS, Barnes AC. et al. Durability of a primary care-led weight-management intervention for remission of type 2 diabetes: 2- year results of the DiRECT open-label, cluster-randomised trial. Lancet Diabetes Endocrinol 2019; 7: 344-355 DOI: 10.1016/S2213-8587(19)30068-3.
  • 103 Maggio CA, Pi-Sunyer FX. Obesity and type 2 diabetes. Endocrinol Metab Clin North Am 2003; 32: 805-822 viii DOI: 10.1016/s0889-8529(03)00071-9.
  • 104 Wolf AM, Colditz GA. Current estimates of the economic cost of obesity in the United States. Obes Res 1998; 6: 97-106 DOI: 10.1002/j.1550-8528.1998.tb00322.x.
  • 105 Colditz GA, Willett WC, Rotnitzky A. et al. Weight gain as a risk factor for clinical diabetes mellitus in women. Ann Intern Med 1995; 122: 481-486 DOI: 10.7326/0003-4819-122-7-199504010-00001.
  • 106 Anderson JW, Kendall CWC, Jenkins DJA. Importance of weight management in type 2 diabetes: review with meta-analysis of clinical studies. J Am Coll Nutr 2003; 22: 331-339 DOI: 10.1080/07315724.2003.10719316.
  • 107 Leslie WS, Taylor R, Harris L. et al. Weight losses with low-energy formula diets in obese patients with and without type 2 diabetes: systematic review and meta-analysis. Int J Obes (Lond) 2017; 41: 96-101 DOI: 10.1038/ijo.2016.175.
  • 108 McCombie L, Brosnahan N, Ross H. et al. Filling the intervention gap: service evaluation of an intensive nonsurgical weight management programme for severe and complex obesity. J Hum Nutr Diet 2019; 32: 329-337 DOI: 10.1111/jhn.12611.
  • 109 Jazet IM, de Craen AJ, van Schie EM. et al. Sustained beneficial metabolic effects 18 months after a 30-day very low calorie diet in severely obese, insulin-treated patients with type 2 diabetes. Diabetes Res Clin Pract 2007; 77: 70-76 DOI: 10.1016/j.diabres.2006.10.019.
  • 110 Kempf K, Schloot NC, Gärtner B. et al. Meal replacement reduces insulin requirement, HbA1c and weight long-term in type 2 diabetes patients with 100 U insulin per day. J Hum Nutr Diet 2014; 27: 21-27 DOI: 10.1111/jhn.12145.
  • 111 Kempf K, Röhling M, Niedermeier K. et al. Individualized Meal Replacement Therapy Improves Clinically Relevant Long-Term Glycemic Control in Poorly Controlled Type 2 Diabetes Patients. Nutrients 2018; 10 DOI: 10.3390/nu10081022.
  • 112 Taylor R, Leslie WS, Barnes AC. et al. Clinical and metabolic features of the randomised controlled Diabetes Remission Clinical Trial (DiRECT) cohort. Diabetologia 2018; 61: 589-598 DOI: 10.1007/s00125-017-4503-0.
  • 113 Halle M, Röhling M, Banzer W. et al. Meal replacement by formula diet reduces weight more than a lifestyle intervention alone in patients with overweight or obesity and accompanied cardiovascular risk factors-the ACOORH trial. Eur J Clin Nutr 2021; 75: 661-669 DOI: 10.1038/s41430-020-00783-4.
  • 114 Röhling M, Kempf K, Banzer W. et al. Prediabetes Conversion to Normoglycemia Is Superior Adding a Low-Carbohydrate and Energy Deficit Formula Diet to Lifestyle Intervention-A 12-Month Subanalysis of the ACOORH Trial. Nutrients 2020; 12 DOI: 10.3390/nu12072022.
  • 115 Holman RR, Paul SK, Bethel MA. et al. 10-year follow-up of intensive glucose control in type 2 diabetes. N Engl J Med 2008; 359: 1577-1589 DOI: 10.1056/NEJMoa0806470.
  • 116 Haslacher H, Fallmann H, Waldhäusl C. et al. Type 2 diabetes care: Improvement by standardization at a diabetes rehabilitation clinic. An observational report. PLoS One 2019; 14: e0226132 DOI: 10.1371/journal.pone.0226132.
  • 117 Paul SK, Shaw JE, Montvida O. et al. Weight gain in insulin-treated patients by body mass index category at treatment initiation: new evidence from real-world data in patients with type 2 diabetes. Diabetes Obes Metab 2016; 18: 1244-1252 DOI: 10.1111/dom.12761.
  • 118 [Anonymous]. 5. Facilitating Behavior Change and Well-being to Improve Health Outcomes: Standards of Medical Care in Diabetes-2020. Diabetes care 2020; 43: S48-S65 DOI: 10.2337/dc20-S005.
  • 119 Dyson PA, Twenefour D, Breen C. et al. Diabetes UK evidence-based nutrition guidelines for the prevention and management of diabetes. Diabetic medicine: a journal of the British Diabetic Association 2018; 35: 541-547 DOI: 10.1111/dme.13603.
  • 120 Dworatzek PD, Arcudi K, Gougeon R. et al. Nutrition therapy. Can J Diabetes 2013; 37: S45-S55 DOI: 10.1016/j.jcjd.2013.01.019.
  • 121 Hallberg SJ, Dockter NE, Kushner JA. et al. Improving the scientific rigour of nutritional recommendations for adults with type 2 diabetes: A comprehensive review of the American Diabetes Association guidelinerecommended eating patterns. Diabetes Obes Metab 2019; 21: 1769-1779 DOI: 10.1111/dom.13736.
  • 122 Salas-Salvadó J, Becerra-Tomás N, Papandreou C. et al. Dietary Patterns Emphasizing the Consumption of Plant Foods in the Management of Type 2 Diabetes: A Narrative Review. Adv Nutr 2019; 10: S320-S331 DOI: 10.1093/advances/nmy102.
  • 123 Viguiliouk E, Kendall CW, Kahleová H. et al. Effect of vegetarian dietary patterns on cardiometabolic risk factors in diabetes: A systematic review and meta-analysis of randomized controlled trials. Clin Nutr 2019; 38: 1133-1145 DOI: 10.1016/j.clnu.2018.05.032.
  • 124 Papamichou D, Panagiotakos DB, Itsiopoulos C. Dietary patterns and management of type 2 diabetes: A systematic review of randomised clinical trials. Nutr Metab Cardiovasc Dis 2019; 29: 531-543 DOI: 10.1016/j.numecd.2019.02.004.
  • 125 Ohlsson B. An Okinawan-based Nordic diet improves glucose and lipid metabolism in health and type 2 diabetes, in alignment with changes in the endocrine profile, whereas zonulin levels are elevated. Exp Ther Med 2019; 17: 2883-2893 DOI: 10.3892/etm.2019.7303.
  • 126 Daneshzad E, Emami S, Darooghegi Mofrad M. et al. Association of modified Nordic diet with cardiovascular risk factors among type 2 diabetes patients: a cross-sectional study. J Cardiovasc Thorac Res 2018; 10: 153-161 DOI: 10.15171/jcvtr.2018.25.
  • 127 Via MA, Mechanick JI. Nutrition in Type 2 Diabetes and the Metabolic Syndrome. Med Clin North Am 2016; 100: 1285-1302 DOI: 10.1016/j.mcna.2016.06.009.
  • 128 Porrata-Maury C, Hernández-Triana M, Ruiz-Álvarez V. et al. Ma-Pi 2 macrobiotic diet and type 2 diabetes mellitus: pooled analysis of shortterm intervention studies. Diabetes Metab Res Rev 2014; 30: 55-66 DOI: 10.1002/dmrr.2519.
  • 129 Garvey WT, Mechanick JI, Brett EM. et al. American Association of Clinical Endocrinologists and American College of Endocrinology Comprehensive CLINICAL Practice Guidelines for Medical Care of Patients with Obesity. Endocr Pract 2016; 22: 1-203 DOI: 10.4158/EP161365.GL.
  • 130 Ajala O, English P, Pinkney J. Systematic review and meta-analysis of different dietary approaches to the management of type 2 diabetes. Am J Clin Nutr 2013; 97: 505-516 DOI: 10.3945/ajcn.112.042457.
  • 131 Huo R, Du T, Xu Y. et al. Effects of Mediterranean-style diet on glycemic control, weight loss and cardiovascular risk factors among type 2 diabetes individuals: a meta-analysis. Eur J Clin Nutr 2015; 69: 1200-1208 DOI: 10.1038/ejcn.2014.243.
  • 132 Pan B, Wu Y, Yang Q. et al. The impact of major dietary patterns on glycemic control, cardiovascular risk factors, and weight loss in patients with type 2 diabetes: A network meta-analysis. J Evid Based Med 2019; 12: 29-39 DOI: 10.1111/jebm.12312.
  • 133 Johannesen CO, Dale HF, Jensen C. et al. Effects of Plant-Based Diets on Outcomes Related to Glucose Metabolism: A Systematic Review. Diabetes Metab Syndr Obes 2020; 13: 2811-2822 DOI: 10.2147/DMSO.S265982.
  • 134 Toumpanakis A, Turnbull T, Alba-Barba I. Effectiveness of plant-based diets in promoting well-being in the management of type 2 diabetes: a systematic review. BMJ Open Diabetes Res Care 2018; 6: e000534 DOI: 10.1136/bmjdrc-2018-000534.
  • 135 Tran E, Dale HF, Jensen C. et al. Effects of Plant-Based Diets on Weight Status: A Systematic Review. Diabetes Metab Syndr Obes 2020; 13: 3433-3448 DOI: 10.2147/DMSO.S272802.
  • 136 Medawar E, Huhn S, Villringer A. et al. The effects of plant-based diets on the body and the brain: a systematic review. Transl Psychiatry 2019; 9: 226 DOI: 10.1038/s41398-019-0552-0.
  • 137 Esposito K, Maiorino MI, Bellastella G. et al. A journey into a Mediterranean diet and type 2 diabetes: a systematic review with meta-analyses. BMJ Open 2015; 5: e008222 DOI: 10.1136/bmjopen-2015-008222.
  • 138 Carter P, Achana F, Troughton J. et al. A Mediterranean diet improves HbA1c but not fasting blood glucose compared to alternative dietary strategies: a network meta-analysis. J Hum Nutr Diet 2014; 27: 280-297 DOI: 10.1111/jhn.12138.
  • 139 Emadian A, Andrews RC, England CY. et al. The effect of macronutrients on glycaemic control: a systematic review of dietary randomised controlled trials in overweight and obese adults with type 2 diabetes in which there was no difference in weight loss between treatment groups. Br J Nutr 2015; 114: 1656-1666 DOI: 10.1017/S0007114515003475.
  • 140 Kahleova H, Salas-Salvadó J, Rahelić D. et al. Dietary Patterns and Cardiometabolic Outcomes in Diabetes: A Summary of Systematic Reviews and Meta-Analyses. Nutrients 2019; 11 DOI: 10.3390/nu11092209.
  • 141 DDG https://www.deutsche-diabetes-gesellschaft.de/fileadmin/user_upload/01_Die_DDG/03_Ausschuesse/02_Ernaehrung/2015-057-025l_S3_Diabetes_mellitus_Empfehlungen_Proteinzufuhr_2015-10.pdfStand: 06.07.2021
  • 142 Pfeiffer AFH, Pedersen E, Schwab U. et al. The Effects of Different Quantities and Qualities of Protein Intake in People with Diabetes Mellitus. Nutrients 2020; 12 DOI: 10.3390/nu12020365.
  • 143 Mittendorfer B, Klein S, Fontana L. A word of caution against excessive protein intake. Nat Rev Endocrinol 2020; 16: 59-66 DOI: 10.1038/s41574-019-0274-7.
  • 144 Labonte CC, Chevalier S, Marliss EB. et al. Effect of 10% dietary protein intake on whole body protein kinetics in type 2 diabetic adults. Clin Nutr 2015; 34: 1115-1121 DOI: 10.1016/j.clnu.2014.12.022.
  • 145 Markova M, Hornemann S, Sucher S. et al. Rate of appearance of amino acids after a meal regulates insulin and glucagon secretion in patients with type 2 diabetes: a randomized clinical trial. Am J Clin Nutr 2018; 108: 279-291 DOI: 10.1093/ajcn/nqy100.
  • 146 Volkert D. Aktuelle ESPEN-Leitlinie Klinische Ernährung und Hydration in der Geriatrie. Dtsch Med Wochenschr 2020; 145: 1306-1314 DOI: 10.1055/a-0986-2892.
  • 147 Song M, Fung TT, Hu FB. et al. Association of Animal and Plant Protein Intake With All-Cause and Cause-Specific Mortality. JAMA Intern Med 2016; 176: 1453-1463 DOI: 10.1001/jamainternmed.2016.4182.
  • 148 Ye J, Yu Q, Mai W. et al. Dietary protein intake and subsequent risk of type 2 diabetes: a dose-response meta-analysis of prospective cohort studies. Acta Diabetol 2019; 56: 851-870 DOI: 10.1007/s00592-019-01320-x.
  • 149 Vernooij RWM, Zeraatkar D, Han MA. et al. Patterns of Red and Processed Meat Consumption and Risk for Cardiometabolic and Cancer Outcomes: A Systematic Review and Meta-analysis of Cohort Studies. Ann Intern Med 2019; 171: 732-741 DOI: 10.7326/M19-1583.
  • 150 Vogtschmidt YD, Raben A, Faber I. et al. Is protein the forgotten ingredient: Effects of higher compared to lower protein diets on cardiometabolic risk factors. A systematic review and meta-analysis of randomised controlled trials. Atherosclerosis 2021; DOI: 10.1016/j.atherosclerosis.2021.05.011.
  • 151 Clifton PM, Condo D, Keogh JB. Long term weight maintenance after advice to consume low carbohydrate, higher protein diets-a systematic review and meta analysis. Nutr Metab Cardiovasc Dis 2014; 24: 224-235 DOI: 10.1016/j.numecd.2013.11.006.
  • 152 Hahn D, Hodson EM, Fouque D. Low protein diets for non-diabetic adults with chronic kidney disease. Cochrane Database Syst Rev 2020; 10: CD001892 DOI: 10.1002/14651858.CD001892.pub5.
  • 153 Ikizler TA, Burrowes JD, Byham-Gray LD. et al. KDOQI Clinical Practice Guideline for Nutrition in CKD: 2020 Update. Am J Kidney Dis 2020; 76: S1-S107 DOI: 10.1053/j.ajkd.2020.05.006.
  • 154 Menon V, Kopple JD, Wang X. et al. Effect of a very low-protein diet on outcomes: long-term follow-up of the Modification of Diet in Renal Disease (MDRD) Study. Am J Kidney Dis 2009; 53: 208-217 DOI: 10.1053/j.ajkd.2008.08.009.
  • 155 Jiang Z. Effect of restricted protein diet supplemented with keto analogues in end-stage renal disease: a systematic review and meta-analysis. International urology and nephrology 2017; 1-8 DOI: 10.1007/s11255-017-1713-9.
  • 156 Fiaccadori E, Sabatino A, Barazzoni R. et al. ESPEN guideline on clinical nutrition in hospitalized patients with acute or chronic kidney disease. Clin Nutr 2021; 40: 1644-1668 DOI: 10.1016/j.clnu.2021.01.028.
  • 157 Dong JY, Zhang ZL, Wang PY. et al. Effects of high-protein diets on body weight, glycaemic control, blood lipids and blood pressure in type 2 diabetes: meta-analysis of randomised controlled trials. Br J Nutr 2013; 110: 781-789 DOI: 10.1017/S0007114513002055.
  • 158 [Anonymous]. Carbohydrates in human nutrition. Report of a Joint FAO/WHO Expert Consultation. FAO Food Nutr Pap 1998; 66: 1-140
  • 159 Wolever TMS. Personalized nutrition by prediction of glycaemic responses: fact or fantasy?. Eur J Clin Nutr 2016; 70: 411-413 DOI: 10.1038/ejcn.2016.31.
  • 160 Berry SE, Valdes AM, Drew DA. et al. Human postprandial responses to food and potential for precision nutrition. Nat Med 2020; 26: 964-973 DOI: 10.1038/s41591-020-0934-0.
  • 161 Zeevi D, Korem T, Zmora N. et al. Personalized Nutrition by Prediction of Glycemic Responses. Cell 2015; 163: 1079-1094 DOI: 10.1016/j.cell.2015.11.001.
  • 162 Jung CH, Choi KM. Impact of High-Carbohydrate Diet on Metabolic Parameters in Patients with Type 2 Diabetes. Nutrients 2017; 9 DOI: 10.3390/nu9040322.
  • 163 Livesey G, Taylor R, Livesey H. et al. Is there a dose-response relation of dietary glycemic load to risk of type 2 diabetes? Meta-analysis of prospective cohort studies. Am J Clin Nutr 2013; 97: 584-596 DOI: 10.3945/ajcn.112.041467.
  • 164 Livesey G, Livesey H. Coronary Heart Disease and Dietary Carbohydrate, Glycemic Index, and Glycemic Load: Dose-Response Meta-analyses of Prospective Cohort Studies. Mayo Clin Proc Innov Qual Outcomes 2019; 3: 52-69 DOI: 10.1016/j.mayocpiqo.2018.12.007.
  • 165 Thomas DE, Elliott EJ. The use of low-glycaemic index diets in diabetes control. Br J Nutr 2010; 104: 797-802 DOI: 10.1017/S0007114510001534.
  • 166 Xu B, Fu J, Qiao Y. et al. Higher intake of microbiota-accessible carbohydrates and improved cardiometabolic risk factors: a meta-analysis and umbrella review of dietary management in patients with type 2 diabetes. Am J Clin Nutr 2021; DOI: 10.1093/ajcn/nqaa435.
  • 167 Jenkins DJA, Kendall CWC, McKeown-Eyssen G. et al. Effect of a lowglycemic index or a high-cereal fiber diet on type 2 diabetes: a randomized trial. JAMA 2008; 300: 2742-2753 DOI: 10.1001/jama.2008.808.
  • 168 Holub I, Gostner A, Hessdörfer S. et al. Improved metabolic control after 12-week dietary intervention with low glycaemic isomalt in patients with type 2 diabetes mellitus. Horm Metab Res 2009; 41: 886-892 DOI: 10.1055/s-0029-1234107.
  • 169 Brand-Miller J, Hayne S, Petocz P. et al. Low-glycemic index diets in the management of diabetes: a meta-analysis of randomized controlled trials. Diabetes care 2003; 26: 2261-2267 DOI: 10.2337/diacare.26.8.2261.
  • 170 Ojo O, Ojo OO, Adebowale F. et al. The Effect of Dietary Glycaemic Index on Glycaemia in Patients with Type 2 Diabetes: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Nutrients 2018; 10 DOI: 10.3390/nu10030373.
  • 171 Franz MJ, MacLeod J, Evert A. et al. Academy of Nutrition and Dietetics Nutrition Practice Guideline for Type 1 and Type 2 Diabetes in Adults: Systematic Review of Evidence for Medical Nutrition Therapy Effectiveness and Recommendations for Integration into the Nutrition Care Process. J Acad Nutr Diet 2017; 117: 1659-1679 DOI: 10.1016/j.jand.2017.03.022.
  • 172 Vega-López S, Venn BJ, Slavin JL. Relevance of the Glycemic Index and Glycemic Load for Body Weight, Diabetes, and Cardiovascular Disease. Nutrients 2018; 10 DOI: 10.3390/nu10101361.
  • 173 Jenkins DJA, Dehghan M, Mente A. et al. Glycemic Index, Glycemic Load, and Cardiovascular Disease and Mortality. N Engl J Med 2021; 384: 1312-1322 DOI: 10.1056/NEJMoa2007123.
  • 174 Coutinho M, Gerstein HC, Wang Y. et al. The relationship between glucose and incident cardiovascular events. A metaregression analysis of published data from 20 studies of 95783 individuals followed for 12.4 years. Diabetes care 1999; 22: 233-240 DOI: 10.2337/diacare.22.2.233.
  • 175 Levitan EB, Song Y, Ford ES. et al. Is nondiabetic hyperglycemia a risk factor for cardiovascular disease? A meta-analysis of prospective studies. Arch Intern Med 2004; 164: 2147-2155 DOI: 10.1001/archinte.164.19.2147.
  • 176 Siri PW, Krauss RM. Influence of dietary carbohydrate and fat on LDL and HDL particle distributions. Curr Atheroscler Rep 2005; 7: 455-459 DOI: 10.1007/s11883-005-0062-9.
  • 177 Aune D, Norat T, Romundstad P. et al. Whole grain and refined grain consumption and the risk of type 2 diabetes: a systematic review and dose-response meta-analysis of cohort studies. Eur J Epidemiol 2013; 28: 845-858 DOI: 10.1007/s10654-013-9852-5.
  • 178 [Anonymous]. Dietary fibre and incidence of type 2 diabetes in eight European countries: the EPIC-InterAct Study and a meta-analysis of prospective studies. Diabetologia 2015; 58: 1394-1408 DOI: 10.1007/s00125-015-3585-9.
  • 179 Kim Y, Je Y. Dietary fibre intake and mortality from cardiovascular disease and all cancers: A meta-analysis of prospective cohort studies. Arch Cardiovasc Dis 2016; 109: 39-54 DOI: 10.1016/j.acvd.2015.09.005.
  • 180 Reynolds AN, Akerman AP, Mann J. Dietary fibre and whole grains in diabetes management: Systematic review and meta-analyses. PLoS Med 2020; 17: e1003053 DOI: 10.1371/journal.pmed.1003053.
  • 181 Da Silva Borges D, Fernandes R, Thives Mello A. et al. Prebiotics may reduce serum concentrations of C-reactive protein and ghrelin in overweight and obese adults: a systematic review and meta-analysis. Nutr Rev 2020; 78: 235-248 DOI: 10.1093/nutrit/nuz045.
  • 182 Reynolds A, Mann J, Cummings J. et al. Carbohydrate quality and human health: a series of systematic reviews and meta-analyses. Lancet 2019; 393: 434-445 DOI: 10.1016/S0140-6736(18)31809-9.
  • 183 Musa-Veloso K, Poon T, Harkness LS. et al. The effects of whole-grain compared with refined wheat, rice, and rye on the postprandial blood glucose response: a systematic review and meta-analysis of randomized controlled trials. Am J Clin Nutr 2018; 108: 759-774 DOI: 10.1093/ajcn/nqy112.
  • 184 Wang W, Li J, Chen X. et al. Whole grain food diet slightly reduces cardiovascular risks in obese/overweight adults: a systematic review and meta-analysis. BMC Cardiovasc Disord 2020; 20: 82 DOI: 10.1186/s12872-020-01337-z.
  • 185 Weickert MO, Roden M, Isken F. et al. Effects of supplemented isoenergetic diets differing in cereal fiber and protein content on insulin sensitivity in overweight humans. Am J Clin Nutr 2011; 94: 459-471 DOI: 10.3945/ajcn.110.004374.
  • 186 Honsek C, Kabisch S, Kemper M. et al. Fibre supplementation for the prevention of type 2 diabetes and improvement of glucose metabolism: the randomised controlled Optimal Fibre Trial (OptiFiT). Diabetologia 2018; 61: 1295-1305 DOI: 10.1007/s00125-018-4582-6.
  • 187 Kabisch S, Meyer NMT, Honsek C. et al. Fasting Glucose State Determines Metabolic Response to Supplementation with Insoluble Cereal Fibre: A Secondary Analysis of the Optimal Fibre Trial (OptiFiT). Nutrients 2019; 11 DOI: 10.3390/nu11102385.
  • 188 Hjorth MF, Ritz C, Blaak EE. et al. Pretreatment fasting plasma glucose and insulin modify dietary weight loss success: results from 3 randomized clinical trials. Am J Clin Nutr 2017; 106: 499-505 DOI: 10.3945/ajcn.117.155200.
  • 189 Xiao Z, Chen H, Zhang Y. et al. The effect of psyllium consumption on weight, body mass index, lipid profile, and glucose metabolism in diabetic patients: A systematic review and dose-response meta-analysis of randomized controlled trials. Phytother Res 2020; 34: 1237-1247 DOI: 10.1002/ptr.6609.
  • 190 Wang L, Yang H, Huang H. et al. Inulin-type fructans supplementation improves glycemic control for the prediabetes and type 2 diabetes populations: results from a GRADE-assessed systematic review and doseresponse meta-analysis of 33 randomized controlled trials. J Transl Med 2019; 17: 410 DOI: 10.1186/s12967-019-02159-0.
  • 191 Rao M, Gao C, Xu L. et al. Effect of Inulin-Type Carbohydrates on Insulin Resistance in Patients with Type 2 Diabetes and Obesity: A Systematic Review and Meta-Analysis. J Diabetes Res 2019; 2019: 5101423 DOI: 10.1155/2019/5101423.
  • 192 Darooghegi Mofrad M, Mozaffari H, Mousavi SM. et al. The effects of psyllium supplementation on body weight, body mass index and waist circumference in adults: A systematic review and dose-response metaanalysis of randomized controlled trials. Crit Rev Food Sci Nutr 2020; 60: 859-872 DOI: 10.1080/10408398.2018.1553140.
  • 193 Rahmani J, Miri A, Černevičiūtė R. et al. Effects of cereal beta-glucan consumption on body weight, body mass index, waist circumference and total energy intake: A meta-analysis of randomized controlled trials. Complement Ther Med 2019; 43: 131-139 DOI: 10.1016/j.ctim.2019.01.018.
  • 194 Ho HVT, Sievenpiper JL, Zurbau A. et al. The effect of oat β-glucan on LDL-cholesterol, non-HDL-cholesterol and apoB for CVD risk reduction: a systematic review and meta-analysis of randomised-controlled trials. Br J Nutr 2016; 116: 1369-1382 DOI: 10.1017/S000711451600341X.
  • 195 Jovanovski E, Yashpal S, Komishon A. et al. Effect of psyllium (Plantago ovata) fiber on LDL cholesterol and alternative lipid targets, non-HDL cholesterol and apolipoprotein B: a systematic review and meta-analysis of randomized controlled trials. Am J Clin Nutr 2018; 108: 922-932 DOI: 10.1093/ajcn/nqy115.
  • 196 Brum J, Ramsey D, McRorie J. et al. Meta-Analysis of Usefulness of Psyllium Fiber as Adjuvant Antilipid Therapy to Enhance Cholesterol Lowering Efficacy of Statins. The American journal of cardiology 2018; 122: 1169-1174 DOI: 10.1016/j.amjcard.2018.06.040.
  • 197 Ho HVT, Jovanovski E, Zurbau A. et al. A systematic review and metaanalysis of randomized controlled trials of the effect of konjac glucomannan, a viscous soluble fiber, on LDL cholesterol and the new lipid targets non-HDL cholesterol and apolipoprotein B. Am J Clin Nutr 2017; 105: 1239-1247 DOI: 10.3945/ajcn.116.142158.
  • 198 Pittler MH, Ernst E. Guar gum for body weight reduction: meta-analysis of randomized trials. Am J Med 2001; 110: 724-730 DOI: 10.1016/s0002-9343(01)00702-1.
  • 199 Khan K, Jovanovski E, Ho HVT. et al. The effect of viscous soluble fiber on blood pressure: A systematic review and meta-analysis of randomized controlled trials. Nutr Metab Cardiovasc Dis 2018; 28: 3-13 DOI: 10.1016/j.numecd.2017.09.007.
  • 200 Thinggaard M, Jacobsen R, Jeune B. et al. Is the relationship between BMI and mortality increasingly U-shaped with advancing age? A 10-year follow-up of persons aged 70-95 years. J Gerontol A Biol Sci Med Sci 2010; 65: 526-531 DOI: 10.1093/gerona/glp214.
  • 201 Guigoz Y, Vellas B. Malnutrition in the elderly: the Mini Nutritional Assessment (MNA). Ther Umsch 1997; 54: 345-350
  • 202 Rubenstein LZ, Harker JO, Salvà A. et al. Screening for undernutrition in geriatric practice: developing the short-form mini-nutritional assessment (MNA-SF). J Gerontol A Biol Sci Med Sci 2001; 56: M366-M372 DOI: 10.1093/gerona/56.6.m366.
  • 203 [Anonym]. S2k-Leitlinie Diagnostik, Therapie und Verlaufskontrolle des Diabetes mellitus im Alter. 2. Auflage 2018 – AWMF-Register-Nr. 057-017. Diabetologie und Stoffwechsel 2018; 13: 423-489 DOI: 10.1055/a-0666-0820.
  • 204 Volkert D, Bauer J, Frühwald T. et al. S3-Leitlinie der Deutschen Gesellschaft für Ernährungsmedizin (DGEM) in Zusammenarbeit mit der GESKES, der AKE und der DGG Klinische Ernährung in der Geriatrie. Aktuelle Ernährungsmedizin 2013; 38: e1-e48
  • 205 Zeyfang A, Wernecke J, Bahrmann A. Diabetes mellitus im Alter. Diabetologie 2020; 15: S112-S119
  • 206 Şat S, Aydınkoç-Tuzcu K, Berger F. et al. Diabetes und Migration. Diabetologie und Stoffwechsel 2019; 14: S306-S317 DOI: 10.1055/a-0899-2742.
  • 207 Diker O, Deniz T, Çetinkaya A. History of Turkish Cuisine Culture and the Influence of the Balkans. Journal of Humanities And Social Science 2016; 10: 1-6
  • 208 Schmid B. Ernährung und Migration [Zugl.: München, Techn. Univ., Diss., 2003]. München: Utz, Wiss; c; 2003
  • 209 Magni P, Bier DM, Pecorelli S. et al. Perspective: Improving Nutritional Guidelines for Sustainable Health Policies: Current Status and Perspectives. Adv Nutr 2017; 8: 532-545 DOI: 10.3945/an.116.014738.
  • 210 Praxistool zur Ernährung. Orientierungshilfe für die Diabetesberatung nach geografischen Räumen. Im Internet (Stand: 15.07.2021) https://migration.deutsche-diabetes-gesellschaft.de/fileadmin/user_upload/01_Die_DDG/05_Arbeitsgemeinschaften/AG_Migranten/Microsite/200417_Ernaehrungstoo_DDG-GB19-Einleger_04.pdf
  • 211 European Commission. Health Promotion and Disease Prevention Knowledge Gateway: Sugars and Sweeteners. Im Internet (Stand: 27.01.2021) https://ec.europa.eu/jrc/en/health-knowledge-gateway/promotion-prevention/nutrition/sugars-sweeteners
  • 212 Scientific Advisory Committee on Nutrition. Carbohydrates and Health report, 2015. Im Internet (Stand: 26.01.2021) https://www.gov.uk/government/publications/
  • 213 McKeown NM, Dashti HS, Ma J. et al. Sugar-sweetened beverage intake associations with fasting glucose and insulin concentrations are not modified by selected genetic variants in a ChREBP-FGF21 pathway: a meta-analysis. Diabetologia 2018; 61: 317-330 DOI: 10.1007/s00125-017-4475-0.
  • 214 Evans RA, Frese M, Romero J. et al. Chronic fructose substitution for glucose or sucrose in food or beverages has little effect on fasting blood glucose, insulin, or triglycerides: a systematic review and metaanalysis. Am J Clin Nutr 2017; 106: 519-529 DOI: 10.3945/ajcn.116.145169.
  • 215 Evans RA, Frese M, Romero J. et al. Fructose replacement of glucose or sucrose in food or beverages lowers postprandial glucose and insulin without raising triglycerides: a systematic review and meta-analysis. Am J Clin Nutr 2017; 106: 506-518 DOI: 10.3945/ajcn.116.145151.
  • 216 Keller A, Heitmann BL, Olsen N. Sugar-sweetened beverages, vascular risk factors and events: a systematic literature review. Public Health Nutr 2015; 18: 1145-1154 DOI: 10.1017/S1368980014002122.
  • 217 Huang C, Huang J, Tian Y. et al. Sugar sweetened beverages consumption and risk of coronary heart disease: a meta-analysis of prospective studies. Atherosclerosis 2014; 234: 11-16 DOI: 10.1016/j.atherosclerosis.2014.01.037.
  • 218 Narain A, Kwok CS, Mamas MA. Soft drinks and sweetened beverages and the risk of cardiovascular disease and mortality: a systematic review and meta-analysis. Int J Clin Pract 2016; 70: 791-805 DOI: 10.1111/ijcp.12841.
  • 219 Cheungpasitporn W, Thongprayoon C, O’Corragain OA. et al. Associations of sugar-sweetened and artificially sweetened soda with chronic kidney disease: a systematic review and meta-analysis. Nephrology (Carlton) 2014; 19: 791-797 DOI: 10.1111/nep.12343.
  • 220 Chen H, Wang J, Li Z. et al. Consumption of Sugar-Sweetened Beverages Has a Dose-Dependent Effect on the Risk of Non-Alcoholic Fatty Liver Disease: An Updated Systematic Review and Dose-Response Meta-Analysis. Int J Environ Res Public Health 2019; 16 DOI: 10.3390/ijerph16122192.
  • 221 Asgari-Taee F, Zerafati-Shoae N, Dehghani M. et al. Association of sugar sweetened beverages consumption with non-alcoholic fatty liver disease: a systematic review and meta-analysis. Eur J Nutr 2019; 58: 1759-1769 DOI: 10.1007/s00394-018-1711-4.
  • 222 Khan TA, Sievenpiper JL. Controversies about sugars: results from systematic reviews and meta-analyses on obesity, cardiometabolic disease and diabetes. Eur J Nutr 2016; 55: 25-43 DOI: 10.1007/s00394-016-1345-3.
  • 223 Choo VL, Viguiliouk E, Blanco Mejia S. et al. Food sources of fructosecontaining sugars and glycaemic control: systematic review and metaanalysis of controlled intervention studies. BMJ 2018; 363: k4644 DOI: 10.1136/bmj.k4644.
  • 224 Semnani-Azad Z, Khan TA, Blanco Mejia S. et al. Association of Major Food Sources of Fructose-Containing Sugars With Incident Metabolic Syndrome: A Systematic Review and Meta-analysis. JAMA Netw Open 2020; 3: e209993 DOI: 10.1001/jamanetworkopen.2020.9993.
  • 225 Bechthold A. Vollwertig essen und trinken nach den 10 Regeln der DGE. Bonn: Deutsche Gesellschaft für Ernährung e. V. (DGE); 2018
  • 226 Wu H, Flint AJ, Qi Q. et al. Association between dietary whole grain intake and risk of mortality: two large prospective studies in US men and women. JAMA Intern Med 2015; 175: 373-384 DOI: 10.1001/jamainternmed.2014.6283.
  • 227 Johnsen NF, Frederiksen K, Christensen J. et al. Whole-grain products and whole-grain types are associated with lower all-cause and causespecific mortality in the Scandinavian HELGA cohort. Br J Nutr 2015; 114: 608-623 DOI: 10.1017/S0007114515001701.
  • 228 Wei H, Gao Z, Liang R. et al. Whole-grain consumption and the risk of all-cause, CVD and cancer mortality: a meta-analysis of prospective cohort studies – CORRIGENDUM. Br J Nutr 2016; 116: 952 DOI: 10.1017/S0007114516002543.
  • 229 Chen GC, Tong X, Xu JY. et al. Whole-grain intake and total, cardiovascular, and cancer mortality: a systematic review and meta-analysis of prospective studies. Am J Clin Nutr 2016; 104: 164-172 DOI: 10.3945/ajcn.115.122432.
  • 230 Benisi-Kohansal S, Saneei P, Salehi-Marzijarani M. et al. Whole-Grain Intake and Mortality from All Causes, Cardiovascular Disease, and Cancer: A Systematic Review and Dose-Response Meta-Analysis of Prospective Cohort Studies. Adv Nutr 2016; 7: 1052-1065 DOI: 10.3945/an.115.011635.
  • 231 Zong G, Gao A, Hu FB. et al. Whole Grain Intake and Mortality From All Causes, Cardiovascular Disease, and Cancer: A Meta-Analysis of Prospective Cohort Studies. Circulation 2016; 133: 2370-2380 DOI: 10.1161/CIRCULATIONAHA.115.021101.
  • 232 Aune D, Keum N, Giovannucci E. et al. Whole grain consumption and risk of cardiovascular disease, cancer, and all cause and cause specific mortality: systematic review and dose-response meta-analysis of prospective studies. BMJ 2016; 353: i2716 DOI: 10.1136/bmj.i2716.
  • 233 Aune D. Plant Foods, Antioxidant Biomarkers, and the Risk of Cardiovascular Disease, Cancer, and Mortality: A Review of the Evidence. Adv Nutr 2019; 10: S404-S421 DOI: 10.1093/advances/nmz042.
  • 234 Zhang B, Zhao Q, Guo W. et al. Association of whole grain intake with all-cause, cardiovascular, and cancer mortality: a systematic review and dose-response meta-analysis from prospective cohort studies. Eur J Clin Nutr 2018; 72: 57-65 DOI: 10.1038/ejcn.2017.149.
  • 235 Jenkins DJ, Wesson V, Wolever TM. et al. Wholemeal versus wholegrain breads: proportion of whole or cracked grain and the glycaemic response. BMJ 1988; 297: 958-960 DOI: 10.1136/bmj.297.6654.958.
  • 236 Reynolds AN, Mann J, Elbalshy M. et al. Wholegrain Particle Size Influences Postprandial Glycemia in Type 2 Diabetes: A Randomized Crossover Study Comparing Four Wholegrain Breads. Diabetes care 2020; 43: 476-479 DOI: 10.2337/dc19-1466.
  • 237 Åberg S, Mann J, Neumann S. et al. Whole-Grain Processing and Glycemic Control in Type 2 Diabetes: A Randomized Crossover Trial. Diabetes care 2020; 43: 1717-1723 DOI: 10.2337/dc20-0263.
  • 238 Jenkins DJA, Kendall CWC, Augustin LSA. et al. Effect of wheat bran on glycemic control and risk factors for cardiovascular disease in type 2 diabetes. Diabetes care 2002; 25: 1522-1528 DOI: 10.2337/diacare.25.9.1522.
  • 239 Miller V, Mente A, Dehghan M. et al. Fruit, vegetable, and legume intake, and cardiovascular disease and deaths in 18 countries (PURE): a prospective cohort study. Lancet 2017; 390: 2037-2049 DOI: 10.1016/S0140-6736(17)32253-5.
  • 240 Aune D, Giovannucci E, Boffetta P. et al. Fruit and vegetable intake and the risk of cardiovascular disease, total cancer and all-cause mortality-a systematic review and dose-response meta-analysis of prospective studies. Int J Epidemiol 2017; 46: 1029-1056 DOI: 10.1093/ije/dyw319.
  • 241 Bechthold A, Boeing H, Schwedhelm C. et al. Food groups and risk of coronary heart disease, stroke and heart failure: A systematic review and dose-response meta-analysis of prospective studies. Crit Rev Food Sci Nutr 2019; 59: 1071-1090 DOI: 10.1080/10408398.2017.1392288.
  • 242 Zhan J, Liu YJ, Cai LB. et al. Fruit and vegetable consumption and risk of cardiovascular disease: A meta-analysis of prospective cohort studies. Crit Rev Food Sci Nutr 2017; 57: 1650-1663 DOI: 10.1080/10408398.2015.1008980.
  • 243 Willett W, Rockström J, Loken B. et al. Food in the Anthropocene: the EAT-Lancet Commission on healthy diets from sustainable food systems. Lancet 2019; 393: 447-492 DOI: 10.1016/S0140-6736(18)31788-4.
  • 244 Barnard ND, Cohen J, Jenkins DJA. et al. A low-fat vegan diet improves glycemic control and cardiovascular risk factors in a randomized clinical trial in individuals with type 2 diabetes. Diabetes care 2006; 29: 1777-1783 DOI: 10.2337/dc06-0606.
  • 245 Jenkins DJA, Kendall CWC, Augustin LSA. et al. Effect of legumes as part of a low glycemic index diet on glycemic control and cardiovascular risk factors in type 2 diabetes mellitus: a randomized controlled trial. Arch Intern Med 2012; 172: 1653-1660 DOI: 10.1001/2013.jamainternmed.70.
  • 246 Renner B, Arens-Azevêdo U, Watzl B. et al. DGE-Positionspapier zur nachhaltigeren Ernährung. ernährungsumschau 2021; 68: 144-154
  • 247 Jannasch F, Kröger J, Schulze MB. Dietary Patterns and Type 2 Diabetes: A Systematic Literature Review and Meta-Analysis of Prospective Studies. J Nutr 2017; 147: 1174-1182 DOI: 10.3945/jn.116.242552.
  • 248 Wallin A, Di Giuseppe D, Orsini N. et al. Fish consumption, dietary longchain n-3 fatty acids, and risk of type 2 diabetes: systematic review and meta-analysis of prospective studies. Diabetes care 2012; 35: 918-929 DOI: 10.2337/dc11-1631.
  • 249 Xun P, He K. Fish Consumption and Incidence of Diabetes: meta-analysis of data from 438000 individuals in 12 independent prospective cohorts with an average 11-year follow-up. Diabetes care 2012; 35: 930-938 DOI: 10.2337/dc11-1869.
  • 250 Schwingshackl L, Hoffmann G, Lampousi AM. et al. Food groups and risk of type 2 diabetes mellitus: a systematic review and meta-analysis of prospective studies. Eur J Epidemiol 2017; 32: 363-375 DOI: 10.1007/s10654-017-0246-y.
  • 251 Muley A, Muley P, Shah MALA. fatty fish or marine n-3 fatty acids for preventing DM?: a systematic review and meta-analysis. Curr Diabetes Rev 2014; 10: 158-165 DOI: 10.2174/1573399810666140515113137.
  • 252 Schlesinger S, Neuenschwander M, Schwedhelm C. et al. Food Groups and Risk of Overweight, Obesity, and Weight Gain: A Systematic Review and Dose-Response Meta-Analysis of Prospective Studies. Adv Nutr 2019; 10: 205-218 DOI: 10.1093/advances/nmy092.
  • 253 Micha R, Shulkin ML, Peñalvo JL. et al. Etiologic effects and optimal intakes of foods and nutrients for risk of cardiovascular diseases and diabetes: Systematic reviews and meta-analyses from the Nutrition and Chronic Diseases Expert Group (NutriCoDE). PLoS One 2017; 12: e0175149 DOI: 10.1371/journal.pone.0175149.
  • 254 Jayedi A, Shab-Bidar S, Eimeri S. et al. Fish consumption and risk of allcause and cardiovascular mortality: a dose-response meta-analysis of prospective observational studies. Public Health Nutr 2018; 21: 1297-1306 DOI: 10.1017/S1368980017003834.
  • 255 Abdelhamid AS, Brown TJ, Brainard JS. et al. Omega-3 fatty acids for the primary and secondary prevention of cardiovascular disease. Cochrane Database Syst Rev 2018; 11: CD003177 DOI: 10.1002/14651858.CD003177.pub4.
  • 256 Hu Y, Hu FB, Manson JE. Marine Omega-3 Supplementation and Cardiovascular Disease: An Updated Meta-Analysis of 13 Randomized Controlled Trials Involving 127 477 Participants. J Am Heart Assoc 2019; 8: e013543 DOI: 10.1161/JAHA.119.013543.
  • 257 Gao H, Geng T, Huang T. et al. Fish oil supplementation and insulin sensitivity: a systematic review and meta-analysis. Lipids Health Dis 2017; 16: 131 DOI: 10.1186/s12944-017-0528-0.
  • 258 Chen C, Yu X, Shao S. Effects of Omega-3 Fatty Acid Supplementation on Glucose Control and Lipid Levels in Type 2 Diabetes: A Meta-Analysis. PLoS One 2015; 10: e0139565 DOI: 10.1371/journal.pone.0139565.
  • 259 DGE – Deutsche Gesellschaft für Ernährung. Vollwertig essen und trinken nach den 10 Regeln der DGE. Im Internet (Stand: 13.07.2021) https://www.dge.de/ernaehrungspraxis/vollwertige-ernaehrung/10-regeln-der-dge/
  • 260 Zeraatkar D, Han MA, Guyatt GH. et al. Red and Processed Meat Consumption and Risk for All-Cause Mortality and Cardiometabolic Outcomes: A Systematic Review and Meta-analysis of Cohort Studies. Ann Intern Med 2019; 171: 703-710 DOI: 10.7326/M19-0655.
  • 261 Davidson MH, Hunninghake D, Maki KC. et al. Comparison of the effects of lean red meat vs lean white meat on serum lipid levels among freeliving persons with hypercholesterolemia: a long-term, randomized clinical trial. Arch Intern Med 1999; 159: 1331-1338 DOI: 10.1001/archinte.159.12.1331.
  • 262 Hunninghake DB, Maki KC, Kwiterovich PO. et al. Incorporation of lean red meat into a National Cholesterol Education Program Step I diet: a long-term, randomized clinical trial in free-living persons with hypercholesterolemia. J Am Coll Nutr 2000; 19: 351-360 DOI: 10.1080/07315724.2000.10718931.
  • 263 Bergeron N, Chiu S, Williams PT. et al. Effects of red meat, white meat, and nonmeat protein sources on atherogenic lipoprotein measures in the context of low compared with high saturated fat intake: a randomized controlled trial. Am J Clin Nutr 2019; 110: 24-33 DOI: 10.1093/ajcn/nqz035.
  • 264 Charlton K, Walton K, Batterham M. et al. Pork and Chicken Meals Similarly Impact on Cognitive Function and Strength in Community-Living Older Adults: A Pilot Study. J Nutr Gerontol Geriatr 2016; 35: 124-145 DOI: 10.1080/21551197.2016.1162259.
  • 265 Murphy KJ, Parker B, Dyer KA. et al. A comparison of regular consumption of fresh lean pork, beef and chicken on body composition: a randomized cross-over trial. Nutrients 2014; 6: 682-696 DOI: 10.3390/nu6020682.
  • 266 Murphy KJ, Thomson RL, Coates AM. et al. Effects of eating fresh lean pork on cardiometabolic health parameters. Nutrients 2012; 4: 711-723 DOI: 10.3390/nu4070711.
  • 267 Johnston BC, Zeraatkar D, Han MA. et al. Unprocessed Red Meat and Processed Meat Consumption: Dietary Guideline Recommendations From the Nutritional Recommendations (NutriRECS) Consortium. Ann Intern Med 2019; 171: 756-764 DOI: 10.7326/M19-1621.
  • 268 Davis PA, Yokoyama W. Cinnamon intake lowers fasting blood glucose: meta-analysis. J Med Food 2011; 14: 884-889 DOI: 10.1089/jmf.2010.0180.
  • 269 Akilen R, Tsiami A, Devendra D. et al. Cinnamon in glycaemic control: Systematic review and meta analysis. Clin Nutr 2012; 31: 609-615 DOI: 10.1016/j.clnu.2012.04.003.
  • 270 Leach MJ, Kumar S. Cinnamon for diabetes mellitus. Cochrane Database Syst Rev 2012; DOI: 10.1002/14651858.CD007170.pub2.
  • 271 Allen RW, Schwartzman E, Baker WL. et al. Cinnamon use in type 2 diabetes: an updated systematic review and meta-analysis. Ann Fam Med 2013; 11: 452-459 DOI: 10.1370/afm.1517.
  • 272 Costello RB, Dwyer JT, Saldanha L. et al. Do Cinnamon Supplements Have a Role in Glycemic Control in Type 2 Diabetes? A Narrative Review. J Acad Nutr Diet 2016; 116: 1794-1802 DOI: 10.1016/j.jand.2016.07.015.
  • 273 Sierra-Puente D, Abadi-Alfie S, Arakanchi-Altaled K. et al. Cinammon (Cinnamomum Spp.) and Type 2 Diabetes Mellitus. CTNR 2019; 18: 247-255 DOI: 10.37290/ctnr2641-452X.18:247-255.
  • 274 Chan CB, Hashemi Z, Subhan FB. The impact of low and no-caloric sweeteners on glucose absorption, incretin secretion, and glucose tolerance. Appl Physiol Nutr Metab 2017; 42: 793-801 DOI: 10.1139/apnm-2016-0705.
  • 275 Brown AW, Bohan Brown MM, Onken KL. et al. Short-term consumption of sucralose, a nonnutritive sweetener, is similar to water with regard to select markers of hunger signaling and short-term glucose homeostasis in women. Nutr Res 2011; 31: 882-888 DOI: 10.1016/j.nutres.2011.10.004.
  • 276 Ford HE, Peters V, Martin NM. et al. Effects of oral ingestion of sucralose on gut hormone response and appetite in healthy normal-weight subjects. Eur J Clin Nutr 2011; 65: 508-513 DOI: 10.1038/ejcn.2010.291.
  • 277 Steinert RE, Frey F, Töpfer A. et al. Effects of carbohydrate sugars and artificial sweeteners on appetite and the secretion of gastrointestinal satiety peptides. Br J Nutr 2011; 105: 1320-1328 DOI: 10.1017/S000711451000512X.
  • 278 Barriocanal LA, Palacios M, Benitez G. et al. Apparent lack of pharmacological effect of steviol glycosides used as sweeteners in humans. A pilot study of repeated exposures in some normotensive and hypotensive individuals and in Type 1 and Type 2 diabetics. Regul Toxicol Pharmacol 2008; 51: 37-41 DOI: 10.1016/j.yrtph.2008.02.006.
  • 279 Brown RJ, Walter M, Rother KI. Effects of diet soda on gut hormones in youths with diabetes. Diabetes care 2012; 35: 959-964 DOI: 10.2337/dc11-2424.
  • 280 Grotz VL, Henry RR, McGill JB. et al. Lack of effect of sucralose on glucose homeostasis in subjects with type 2 diabetes. J Am Diet Assoc 2003; 103: 1607-1612 DOI: 10.1016/j.jada.2003.09.021.
  • 281 Maki KC, Curry LL, Reeves MS. et al. Chronic consumption of rebaudioside A, a steviol glycoside, in men and women with type 2 diabetes mellitus. Food Chem Toxicol 2008; 46: S47-S53 DOI: 10.1016/j.fct.2008.05.007.
  • 282 Olalde-Mendoza L, Moreno-González YE. Modificación de la glucemia en ayuno en adultos con diabetes mellitus tipo 2 después de la ingesta de refrescos de cola y de dieta en el estado de querétaro, México. Arch Latinoam Nutr 2013; 63: 142-147
  • 283 Temizkan S, Deyneli O, Yasar M. et al. Sucralose enhances GLP-1 release and lowers blood glucose in the presence of carbohydrate in healthy subjects but not in patients with type 2 diabetes. Eur J Clin Nutr 2015; 69: 162-166 DOI: 10.1038/ejcn.2014.208.
  • 284 Ferrazzano GF, Cantile T, Alcidi B. et al. Is Stevia rebaudiana Bertoni a Non Cariogenic Sweetener? A Review. Molecules 2015; 21: E38 DOI: 10.3390/molecules21010038.
  • 285 Prashant GM, Patil RB, Nagaraj T. et al. The antimicrobial activity of the three commercially available intense sweeteners against common periodontal pathogens: an in vitro study. J Contemp Dent Pract 2012; 13: 749-752 DOI: 10.5005/jp-journals-10024-1222.
  • 286 Suez J, Korem T, Zeevi D. et al. Artificial sweeteners induce glucose intolerance by altering the gut microbiota. Nature 2014; 514: 181-186 DOI: 10.1038/nature13793.
  • 287 EFSA 2013. EFSA schließt vollständige Risikobewertung zu Aspartam ab und kommt zu dem Schluss, dass es in den derzeitigen Expositionsmengen sicher ist. Im Internet (Stand: 01.09.2020) https://www.efsa.europa.eu/de/press/news/131210
  • 288 Bundesinstitut für Risikobewertung. Bewertung von Süßstoffen und Zuckeraustauschstoffen. Hintergrundinformation Nr. 025/2014 des BfR vom 1. Juli 2014. Im Internet (Stand: 01.09.2020) www.bfr.bund.de/cm/343/bewertung_von_suessstoffen.pdf
  • 289 Bock PM, Telo GH, Ramalho R. et al. The effect of probiotics, prebiotics or synbiotics on metabolic outcomes in individuals with diabetes: a systematic review and meta-analysis. Diabetologia 2021; 64: 26-41 DOI: 10.1007/s00125-020-05295-1.
  • 290 Rittiphairoj T, Pongpirul K, Janchot K. et al. Probiotics Contribute to Glycemic Control in Patients with Type 2 Diabetes Mellitus: A Systematic Review and Meta-Analysis. Adv Nutr 2021; 12: 722-734 DOI: 10.1093/advances/nmaa133.
  • 291 Tao YW, Gu YL, Mao XQ. et al. Effects of probiotics on type II diabetes mellitus: a meta-analysis. J Transl Med 2020; 18: 30 DOI: 10.1186/s12967-020-02213-2.
  • 292 Ardeshirlarijani E, Tabatabaei-Malazy O, Mohseni S. et al. Effect of probiotics supplementation on glucose and oxidative stress in type 2 diabetes mellitus: a meta-analysis of randomized trials. Daru 2019; 27: 827-837 DOI: 10.1007/s40199-019-00302-2.
  • 293 Mahboobi S, Rahimi F, Jafarnejad S. Effects of Prebiotic and Synbiotic Supplementation on Glycaemia and Lipid Profile in Type 2 Diabetes: A Meta-Analysis of Randomized Controlled Trials. Adv Pharm Bull 2018; 8: 565-574 DOI: 10.15171/apb.2018.065.
  • 294 Akbari V, Hendijani F. Effects of probiotic supplementation in patients with type 2 diabetes: systematic review and meta-analysis. Nutr Rev 2016; 74: 774-784 DOI: 10.1093/nutrit/nuw039.
  • 295 Yao K, Zeng L, He Q. et al. Effect of Probiotics on Glucose and Lipid Metabolism in Type 2 Diabetes Mellitus: A Meta-Analysis of 12 Randomized Controlled Trials. Med Sci Monit 2017; 23: 3044-3053 DOI: 10.12659/msm.902600.
  • 296 Wang C, Zhang C, Li S. et al. Effects of Probiotic Supplementation on Dyslipidemia in Type 2 Diabetes Mellitus: A Meta-Analysis of Randomized Controlled Trials. Foods 2020; 9 DOI: 10.3390/foods9111540.
  • 297 Kasińska MA, Drzewoski J. Effectiveness of probiotics in type 2 diabetes: a meta-analysis. Pol Arch Med Wewn 2015; 125: 803-813 DOI: 10.20452/pamw.3156.
  • 298 Palacios T, Vitetta L, Coulson S. et al. Targeting the Intestinal Microbiota to Prevent Type 2 Diabetes and Enhance the Effect of Metformin on Glycaemia: A Randomised Controlled Pilot Study. Nutrients 2020; 12 DOI: 10.3390/nu12072041.
  • 299 Zheng M, Zhang R, Tian X. et al. Assessing the Risk of Probiotic Dietary Supplements in the Context of Antibiotic Resistance. Front Microbiol 2017; 8: 908 DOI: 10.3389/fmicb.2017.00908.
  • 300 Wong A, Ngu DYS, Dan LA. et al. Detection of antibiotic resistance in probiotics of dietary supplements. Nutr J 2015; 14: 95 DOI: 10.1186/s12937-015-0084-2.
  • 301 BgVV – ehemals: Bundesinstitut für gesundheitlichen Verbraucherschutz und Veterinärmedizin. Abschlussbericht der Arbeitsgruppe „Probiotische Mikroorganismenkulturen in Lebensmitteln“ am BgVV. Im Internet (Stand: 13.07.2021) https://mobil.bfr.bund.de/cm/343/probiot.pdf
  • 302 de Vrese M. Mikrobiologie, Wirkung und Sicherheit von Probiotika. Monatsschrift Kinderheilkunde 2008; 156: 1063-1069 DOI: 10.1007/s00112-008-1829-1.
  • 303 Vrieze A, van Nood E, Holleman F. et al. Transfer of intestinal microbiota from lean donors increases insulin sensitivity in individuals with metabolic syndrome. Gastroenterology 2012; 143: 913-916.e7 DOI: 10.1053/j.gastro.2012.06.031.
  • 304 Simon MC, Strassburger K, Nowotny B. et al. Intake of Lactobacillus reuteri improves incretin and insulin secretion in glucose-tolerant humans: a proof of concept. Diabetes care 2015; 38: 1827-1834 DOI: 10.2337/dc14-2690.
  • 305 Tilg H, Moschen AR. Microbiota and diabetes: an evolving relationship. Gut 2014; 63: 1513-1521 DOI: 10.1136/gutjnl-2014-306928.
  • 306 Kjems LL, Holst JJ, Vølund A. et al. The influence of GLP-1 on glucosestimulated insulin secretion: effects on beta-cell sensitivity in type 2 and nondiabetic subjects. Diabetes 2003; 52: 380-386 DOI: 10.2337/diabetes.52.2.380.
  • 307 Karlsson FH, Tremaroli V, Nookaew I. et al. Gut metagenome in European women with normal, impaired and diabetic glucose control. Nature 2013; 498: 99-103 DOI: 10.1038/nature12198.
  • 308 Qin J, Li Y, Cai Z. et al. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature 2012; 490: 55-60 DOI: 10.1038/nature11450.
  • 309 Larsen N, Vogensen FK, van den Berg FWJ. et al. Gut microbiota in human adults with type 2 diabetes differs from non-diabetic adults. PLoS One 2010; 5: e9085 DOI: 10.1371/journal.pone.0009085.
  • 310 Wu H, Esteve E, Tremaroli V. et al. Metformin alters the gut microbiome of individuals with treatment-naive type 2 diabetes, contributing to the therapeutic effects of the drug. Nat Med 2017; 23: 850-858 DOI: 10.1038/nm.4345.
  • 311 Forslund K, Hildebrand F, Nielsen T. et al. Corrigendum: Disentangling type 2 diabetes and metformin treatment signatures in the human gut microbiota. Nature 2017; 545: 116 DOI: 10.1038/nature22318.
  • 312 Forslund K, Hildebrand F, Nielsen T. et al. Disentangling type 2 diabetes and metformin treatment signatures in the human gut microbiota. Nature 2015; 528: 262-266 DOI: 10.1038/nature15766.
  • 313 Caesar R. Pharmacologic and Nonpharmacologic Therapies for the Gut Microbiota in Type 2 Diabetes. Can J Diabetes 2019; 43: 224-231 DOI: 10.1016/j.jcjd.2019.01.007.
  • 314 Evert AB, Boucher JL, Cypress M. et al. Nutrition therapy recommendations for the management of adults with diabetes. Diabetes care 2014; 37: S120-S143 DOI: 10.2337/dc14-S120.
  • 315 Sievenpiper JL, Chan CB, Dworatzek PD. et al. Nutrition Therapy. Can J Diabetes 2018; 42: S64-S79 DOI: 10.1016/j.jcjd.2017.10.009.
  • 316 Sievenpiper JL, de Souza RJ, Mirrahimi A. et al. Effect of fructose on body weight in controlled feeding trials: a systematic review and meta-analysis. Ann Intern Med 2012; 156: 291-304 DOI: 10.7326/0003-4819-156-4-201202210-00007.
  • 317 Ha V, Sievenpiper JL, de Souza RJ. et al. Effect of fructose on blood pressure: a systematic review and meta-analysis of controlled feeding trials. Hypertension 2012; 59: 787-795 DOI: 10.1161/HYPERTENSIO-NAHA.111.182311.
  • 318 Chiavaroli L, de Souza RJ, Ha V. et al. Effect of Fructose on Established Lipid Targets: A Systematic Review and Meta-Analysis of Controlled Feeding Trials. J Am Heart Assoc 2015; 4: e001700 DOI: 10.1161/JAHA.114.001700.
  • 319 Wang X, Ouyang Y, Liu J. et al. Fruit and vegetable consumption and mortality from all causes, cardiovascular disease, and cancer: systematic review and dose-response meta-analysis of prospective cohort studies. BMJ 2014; 349: g4490 DOI: 10.1136/bmj.g4490.
  • 320 Chiu S, Sievenpiper JL, de Souza RJ. et al. Effect of fructose on markers of non-alcoholic fatty liver disease (NAFLD): a systematic review and meta-analysis of controlled feeding trials. Eur J Clin Nutr 2014; 68: 416-423 DOI: 10.1038/ejcn.2014.8.
  • 321 Wang DD, Sievenpiper JL, de Souza RJ. et al. The effects of fructose intake on serum uric acid vary among controlled dietary trials. J Nutr 2012; 142: 916-923 DOI: 10.3945/jn.111.151951.
  • 322 Cozma AI, Sievenpiper JL, de Souza RJ. et al. Effect of fructose on glycemic control in diabetes: a systematic review and meta-analysis of controlled feeding trials. Diabetes care 2012; 35: 1611-1620 DOI: 10.2337/dc12-0073.
  • 323 Sievenpiper JL, Chiavaroli L, de Souza RJ. et al. ‘Catalytic’ doses of fructose may benefit glycaemic control without harming cardiometabolic risk factors: a small meta-analysis of randomised controlled feeding trials. Br J Nutr 2012; 108: 418-423 DOI: 10.1017/S000711451200013X.
  • 324 Sievenpiper JL, Carleton AJ, Chatha S. et al. Heterogeneous effects of fructose on blood lipids in individuals with type 2 diabetes: systematic review and meta-analysis of experimental trials in humans. Diabetes care 2009; 32: 1930-1937 DOI: 10.2337/dc09-0619.
  • 325 Chung M, Ma J, Patel K. et al. Fructose, high-fructose corn syrup, sucrose, and nonalcoholic fatty liver disease or indexes of liver health: a systematic review and meta-analysis. Am J Clin Nutr 2014; 100: 833-849 DOI: 10.3945/ajcn.114.086314.
  • 326 Goran MI, Ulijaszek SJ, Ventura EE. High fructose corn syrup and diabetes prevalence: a global perspective. Glob Public Health 2013; 8: 55-64 DOI: 10.1080/17441692.2012.736257.
  • 327 Tsilas CS, de Souza RJ, Mejia SB. et al. Relation of total sugars, fructose and sucrose with incident type 2 diabetes: a systematic review and meta-analysis of prospective cohort studies. CMAJ 2017; 189: E711-E720 DOI: 10.1503/cmaj.160706.
  • 328 David Wang D, Sievenpiper JL, de Souza RJ. et al. Effect of fructose on postprandial triglycerides: a systematic review and meta-analysis of controlled feeding trials. Atherosclerosis 2014; 232: 125-133 DOI: 10.1016/j.atherosclerosis.2013.10.019.
  • 329 Zhang YH, An T, Zhang RC. et al. Very high fructose intake increases serum LDL-cholesterol and total cholesterol: a meta-analysis of controlled feeding trials. J Nutr 2013; 143: 1391-1398 DOI: 10.3945/jn.113.175323.
  • 330 Schwingshackl L, Neuenschwander M, Hoffmann G. et al. Dietary sugars and cardiometabolic risk factors: a network meta-analysis on isocaloric substitution interventions. Am J Clin Nutr 2020; 111: 187-196 DOI: 10.1093/ajcn/nqz273.
  • 331 Weber KS, Simon MC, Strassburger K. et al. Habitual Fructose Intake Relates to Insulin Sensitivity and Fatty Liver Index in Recent-Onset Type 2 Diabetes Patients and Individuals without Diabetes. Nutrients 2018; 10 DOI: 10.3390/nu10060774.
  • 332 ter Horst KW, Schene MR, Holman R. et al. Effect of fructose consumption on insulin sensitivity in nondiabetic subjects: a systematic review and meta-analysis of diet-intervention trials. Am J Clin Nutr 2016; 104: 1562-1576 DOI: 10.3945/ajcn.116.137786.
  • 333 Kulzer B, Albus C, Herpertz S. et al. Psychosoziales und Diabetes. Der Diabetologe 2019; 15: 452-469 DOI: 10.1007/s11428-018-0440-x.
  • 334 Ahmed AT, Karter AJ, Warton EM. et al. The relationship between alcohol consumption and glycemic control among patients with diabetes: the Kaiser Permanente Northern California Diabetes Registry. J Gen Intern Med 2008; 23: 275-282 DOI: 10.1007/s11606-007-0502-z.
  • 335 Bantle AE, Thomas W, Bantle JP. Metabolic effects of alcohol in the form of wine in persons with type 2 diabetes mellitus. Metabolism 2008; 57: 241-245 DOI: 10.1016/j.metabol.2007.09.007.
  • 336 Avogaro A, Beltramello P, Gnudi L. et al. Alcohol intake impairs glucose counterregulation during acute insulin-induced hypoglycemia in IDDM patients. Evidence for a critical role of free fatty acids. Diabetes 1993; 42: 1626-1634
  • 337 Turner BC, Jenkins E, Kerr D. et al. The effect of evening alcohol consumption on next-morning glucose control in type 1 diabetes. Diabetes care 2001; 24: 1888-1893 DOI: 10.2337/diacare.24.11.1888.
  • 338 Richardson T, Weiss M, Thomas P. et al. Day after the night before: influence of evening alcohol on risk of hypoglycemia in patients with type 1 diabetes. Diabetes care 2005; 28: 1801-1802 DOI: 10.2337/diacare.28.7.1801.
  • 339 Pedersen-Bjergaard U, Reubsaet JLE, Nielsen SL. et al. Psychoactive drugs, alcohol, and severe hypoglycemia in insulin-treated diabetes: analysis of 141 cases. Am J Med 2005; 118: 307-310 DOI: 10.1016/j.amjmed.2004.07.054.
  • 340 Frier B, Fisher M. Hrsg Moderators, monitoring and management of hypoglycaemia [101-120]. Chichester: John Wiley & Sons; 2007
  • 341 Ahmed AT, Karter AJ, Liu J. Alcohol consumption is inversely associated with adherence to diabetes self-care behaviours. Diabetic medicine: a journal of the British Diabetic Association 2006; 23: 795-802 DOI: 10.1111/j.1464-5491.2006.01878.x.
  • 342 Nahas R, Goguen J. Natural health products. Can J Diabetes 2013; 37: S97-S99 DOI: 10.1016/j.jcjd.2013.01.029.
  • 343 Hartweg J, Perera R, Montori V. et al. Omega-3 polyunsaturated fatty acids (PUFA) for type 2 diabetes mellitus. Cochrane Database Syst Rev 2008; DOI: 10.1002/14651858.CD003205.pub2.
  • 344 Hartweg J, Farmer AJ, Holman RR. et al. Potenzial impact of omega-3 treatment on cardiovascular disease in type 2 diabetes. Curr Opin Lipidol 2009; 20: 30-38 DOI: 10.1097/mol.0b013e328321b3be.
  • 345 O’Mahoney LL, Matu J, Price OJ. et al. Omega-3 polyunsaturated fatty acids favourably modulate cardiometabolic biomarkers in type 2 diabetes: a meta-analysis and meta-regression of randomized controlled trials. Cardiovasc Diabetol 2018; 17: 98 DOI: 10.1186/s12933-018-0740-x.
  • 346 Mirhosseini N, Vatanparast H, Mazidi M. et al. The Effect of Improved Serum 25-Hydroxyvitamin D Status on Glycemic Control in Diabetic Patients: A Meta-Analysis. J Clin Endocrinol Metab 2017; 102: 3097-3110 DOI: 10.1210/jc.2017-01024.
  • 347 Li X, Liu Y, Zheng Y. et al. The Effect of Vitamin D Supplementation on Glycemic Control in Type 2 Diabetes Patients: A Systematic Review and Meta-Analysis. Nutrients 2018; 10 DOI: 10.3390/nu10030375.
  • 348 Jafari T, Fallah AA, Barani A. Effects of vitamin D on serum lipid profile in patients with type 2 diabetes: A meta-analysis of randomized controlled trials. Clin Nutr 2016; 35: 1259-1268 DOI: 10.1016/j.clnu.2016.03.001.
  • 349 Mousa A, Naderpoor N, Teede H. et al. Vitamin D supplementation for improvement of chronic low-grade inflammation in patients with type 2 diabetes: a systematic review and meta-analysis of randomized controlled trials. Nutr Rev 2018; 76: 380-394 DOI: 10.1093/nutrit/nux077.
  • 350 Lee KJ, Lee YJ. Effects of vitamin D on blood pressure in patients with type 2 diabetes mellitus. Int J Clin Pharmacol Ther 2016; 54: 233-242 DOI: 10.5414/CP202493.
  • 351 Yu Y, Tian L, Xiao Y. et al. Effect of Vitamin D Supplementation on Some Inflammatory Biomarkers in Type 2 Diabetes Mellitus Subjects: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Ann Nutr Metab 2018; 73: 62-73 DOI: 10.1159/000490358.
  • 352 Verma H, Garg R. Effect of magnesium supplementation on type 2 diabetes associated cardiovascular risk factors: a systematic review and meta-analysis. J Hum Nutr Diet 2017; 30: 621-633 DOI: 10.1111/jhn.12454.
  • 353 Simental-Mendía LE, Sahebkar A, Rodríguez-Morán M. et al. A systematic review and meta-analysis of randomized controlled trials on the effects of magnesium supplementation on insulin sensitivity and glucose control. Pharmacol Res 2016; 111: 272-282 DOI: 10.1016/j.phrs.2016.06.019.
  • 354 Asbaghi O, Hosseini R, Boozari B. et al. The Effects of Magnesium Supplementation on Blood Pressure and Obesity Measure Among Type 2 Diabetes Patient: a Systematic Review and Meta-analysis of Randomized Controlled Trials. Biol Trace Elem Res 2021; 199: 413-424 DOI: 10.1007/s12011-020-02157-0.
  • 355 Vincent JB. Elucidating a biological role for chromium at a molecular level. Acc Chem Res 2000; 33: 503-510 DOI: 10.1021/ar990073r.
  • 356 Asbaghi O, Fatemeh N, Mahnaz RK. et al. Effects of chromium supplementation on glycemic control in patients with type 2 diabetes: a systematic review and meta-analysis of randomized controlled trials. Pharmacol Res 2020; 161: 105098 DOI: 10.1016/j.phrs.2020.105098.
  • 357 Yin RV, Phung OJ. Effect of chromium supplementation on glycated hemoglobin and fasting plasma glucose in patients with diabetes mellitus. Nutr J 2015; 14: 14 DOI: 10.1186/1475-2891-14-14.
  • 358 Suksomboon N, Poolsup N, Yuwanakorn A. Systematic review and meta-analysis of the efficacy and safety of chromium supplementation in diabetes. J Clin Pharm Ther 2014; 39: 292-306 DOI: 10.1111/jcpt.12147.
  • 359 Chimienti F. Zinc, pancreatic islet cell function and diabetes: new insights into an old story. Nutr Res Rev 2013; 26: 1-11 DOI: 10.1017/S0954422412000212.
  • 360 de Carvalho GB. Zinc’s role in the glycemic control of patients with type 2 diabetes: a systematic review. BioMetals 2017; 1-12 DOI: 10.1007/s10534-017-9996-y.
  • 361 Fernández-Cao JC, Warthon-Medina M, Hall Moran V. et al. Dietary zinc intake and whole blood zinc concentration in subjects with type 2 diabetes versus healthy subjects: A systematic review, meta-analysis and meta-regression. J Trace Elem Med Biol 2018; 49: 241-251 DOI: 10.1016/j.jtemb.2018.02.008.
  • 362 Wang X, Wu W, Zheng W. et al. Zinc supplementation improves glycemic control for diabetes prevention and management: a systematic review and meta-analysis of randomized controlled trials. Am J Clin Nutr 2019; 110: 76-90 DOI: 10.1093/ajcn/nqz041.
  • 363 Asbaghi O, Sadeghian M, Fouladvand F. et al. Effects of zinc supplementation on lipid profile in patients with type 2 diabetes mellitus: A systematic review and meta-analysis of randomized controlled trials. Nutr Metab Cardiovasc Dis 2020; 30: 1260-1271 DOI: 10.1016/j.numecd.2020.03.021.
  • 364 Rahimi R, Nikfar S, Larijani B. et al. A review on the role of antioxidants in the management of diabetes and its complications. Biomed Pharmacother 2005; 59: 365-373 DOI: 10.1016/j.biopha.2005.07.002.
  • 365 Ashor AW, Werner AD, Lara J. et al. Effects of vitamin C supplementation on glycaemic control: a systematic review and meta-analysis of randomised controlled trials. Eur J Clin Nutr 2017; 71: 1371-1380 DOI: 10.1038/ejcn.2017.24.
  • 366 Xu R, Zhang S, Tao A. et al. Influence of vitamin E supplementation on glycaemic control: a meta-analysis of randomised controlled trials. PLoS One 2014; 9: e95008 DOI: 10.1371/journal.pone.0095008.
  • 367 Khodaeian M, Tabatabaei-Malazy O, Qorbani M. et al. Effect of vitamins C and E on insulin resistance in diabetes: a meta-analysis study. Eur J Clin Invest 2015; 45: 1161-1174 DOI: 10.1111/eci.12534.
  • 368 Montero D, Walther G, Stehouwer CDA. et al. Effect of antioxidant vitamin supplementation on endothelial function in type 2 diabetes mellitus: a systematic review and meta-analysis of randomized controlled trials. Obes Rev 2014; 15: 107-116 DOI: 10.1111/obr.12114.
  • 369 Tabatabaei-Malazy O, Ardeshirlarijani E, Namazi N. et al. Dietary antioxidative supplements and diabetic retinopathy; a systematic review. J Diabetes Metab Disord 2019; 18: 705-716 DOI: 10.1007/s40200-019-00434-x.
  • 370 Jeyaraman MM, Al-Yousif NSH, Singh Mann A. et al. Resveratrol for adults with type 2 diabetes mellitus. Cochrane Database Syst Rev 2020; 1: CD011919 DOI: 10.1002/14651858.CD011919.pub2.
  • 371 Palma-Duran SA, Vlassopoulos A, Lean M. et al. Nutritional intervention and impact of polyphenol on glycohemoglobin (HbA1c) in non-diabetic and type 2 diabetic subjects: Systematic review and meta-analysis. Crit Rev Food Sci Nutr 2017; 57: 975-986 DOI: 10.1080/10408398.2014.973932.
  • 372 Fogacci F, Tocci G, Presta V. et al. Effect of resveratrol on blood pressure: A systematic review and meta-analysis of randomized, controlled, clinical trials. Crit Rev Food Sci Nutr 2019; 59: 1605-1618 DOI: 10.1080/10408398.2017.1422480.
  • 373 Drzikova B. Haferprodukte mit modifiziertem Gehalt an β-Glucanen und resistenter Stärke und ihre Effekte auf den Gastrointestinaltrakt unter In-vitro- und In-vivo-Bedingungen. 2005 http://opus.kobv.de/ubp/volltexte/205/592/
  • 374 He L, Zhao J, Huang Y. et al. The difference between oats and beta-glucan extract intake in the management of HbA1c, fasting glucose and insulin sensitivity: ameta-analysis of randomized controlled trials. Food Funct 2016; 7: 1413-1428 DOI: 10.1039/c5fo01364j.
  • 375 Abbasi NN, Purslow PP, Tosh SM. et al. Oat β-glucan depresses SGLT1- and GLUT2-mediated glucose transport in intestinal epithelial cells (IEC-6). Nutr Res 2016; 36: 541-552 DOI: 10.1016/j.nutres.2016.02.004.
  • 376 Wang F, Yu G, Zhang Y. et al. Dipeptidyl Peptidase IV Inhibitory Peptides Derived from Oat (Avena sativa L.), Buckwheat (Fagopyrum esculentum), and Highland Barley (Hordeum vulgare trifurcatum (L.) Trofim) Proteins. J Agric Food Chem 2015; 63: 9543-9549 DOI: 10.1021/acs.jafc.5b04016.
  • 377 Liu M, Zhang Y, Zhang H. et al. The anti-diabetic activity of oat β-d-glucan in streptozotocin-nicotinamide induced diabetic mice. Int J Biol Macromol 2016; 91: 1170-1176 DOI: 10.1016/j.ijbiomac.2016.06.083.
  • 378 Lammert A, Kratzsch J, Selhorst J. et al. Clinical benefit of a short term dietary oatmeal intervention in patients with type 2 diabetes and severe insulin resistance: a pilot study. Exp Clin Endocrinol Diabetes 2008; 116: 132-134 DOI: 10.1055/s-2007-984456.
  • 379 Delgado G, Kleber ME, Krämer BK. et al. Dietary Intervention with Oatmeal in Patients with uncontrolled Type 2 Diabetes Mellitus – A Crossover Study. Exp Clin Endocrinol Diabetes 2019; 127: 623-629 DOI: 10.1055/a-0677-6068.
  • 380 Delgado GE, Krämer BK, Scharnagl H. et al. Bile Acids in Patients with Uncontrolled Type 2 Diabetes Mellitus – The Effect of Two Days of Oatmeal Treatment. Exp Clin Endocrinol Diabetes 2020; 128: 624-630 DOI: 10.1055/a-1069-7330.
  • 381 Behall KM, Scholfield DJ, Hallfrisch J. Comparison of hormone and glucose responses of overweight women to barley and oats. J Am Coll Nutr 2005; 24: 182-188 DOI: 10.1080/07315724.2005.10719464.
  • 382 Braaten JT, Scott FW, Wood PJ. et al. High beta-glucan oat bran and oat gum reduce postprandial blood glucose and insulin in subjects with and without type 2 diabetes. Diabetic medicine: a journal of the British Diabetic Association 1994; 11: 312-318 DOI: 10.1111/j.1464-5491.1994.tb00277.x.
  • 383 Pick ME, Hawrysh ZJ, Gee MI. et al. Oat bran concentrate bread products improve long-term control of diabetes: a pilot study. J Am Diet Assoc 1996; 96: 1254-1261 DOI: 10.1016/S0002-8223(96)00329-X.
  • 384 Tapola N, Karvonen H, Niskanen L. et al. Glycemic responses of oat bran products in type 2 diabetic patients. Nutr Metab Cardiovasc Dis 2005; 15: 255-261 DOI: 10.1016/j.numecd.2004.09.003.
  • 385 Tappy L, Gügolz E, Würsch P. Effects of breakfast cereals containing various amounts of beta-glucan fibers on plasma glucose and insulin responses in NIDDM subjects. Diabetes care 1996; 19: 831-834 DOI: 10.2337/diacare.19.8.831.
  • 386 Wood PJ, Beer MU, Butler G. Evaluation of role of concentration and molecular weight of oat beta-glucan in determining effect of viscosity on plasma glucose and insulin following an oral glucose load. Br J Nutr 2000; 84: 19-23
  • 387 [Anonym]. Scientific Opinion on the substantiation of health claims related to beta glucans and maintenance or achievement of normal blood glucose concentrations (ID 756, 802, 2935) pursuant to Article 13(1) of Regulation (EC) No 1924/2006. EFS2 2010; 8 DOI: 10.2903/j.efsa.2010.1482.
  • 388 Amtsblatt der Europäischen Union 2011 L 136/1 vom 25.5.2012 https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2012:136:0001:0040:DE:PDFStand: 04.07.2021
  • 389 Zurbau A, Noronha JC, Khan TA. et al. The effect of oat β-glucan on postprandial blood glucose and insulin responses: a systematic review and meta-analysis. Eur J Clin Nutr 2021; DOI: 10.1038/s41430-021-00875-9.
  • 390 Battilana P, Ornstein K, Minehira K. et al. Mechanisms of action of betaglucan in postprandial glucose metabolism in healthy men. Eur J Clin Nutr 2001; 55: 327-333 DOI: 10.1038/sj.ejcn.1601160.
  • 391 Jenkins AL, Jenkins DJA, Zdravkovic U. et al. Depression of the glycemic index by high levels of beta-glucan fiber in two functional foods tested in type 2 diabetes. Eur J Clin Nutr 2002; 56: 622-628 DOI: 10.1038/sj.ejcn.1601367.