Hamostaseologie 2021; 41(06): 460-468
DOI: 10.1055/a-1665-6249
Review Article

Pathogenic Aspects of Inherited Platelet Disorders

Doris Boeckelmann
1   Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, Medical Center – University of Freiburg, Freiburg, Germany
,
Hannah Glonnegger
1   Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, Medical Center – University of Freiburg, Freiburg, Germany
,
Kirstin Sandrock-Lang
1   Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, Medical Center – University of Freiburg, Freiburg, Germany
,
Barbara Zieger
1   Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, Medical Center – University of Freiburg, Freiburg, Germany
› Author Affiliations

Abstract

Inherited platelet disorders (IPDs) constitute a large heterogeneous group of rare bleeding disorders. These are classified into: (1) quantitative defects, (2) qualitative disorders, or (3) altered platelet production rate disorders or increased platelet turnover. Classically, IPD diagnostic is based on clinical phenotype characterization, comprehensive laboratory analyses (platelet function analysis), and, in former times, candidate gene sequencing. Today, molecular genetic analysis is performed using next-generation sequencing, mostly by targeting enrichment of a gene panel or by whole-exome sequencing. Still, the biochemical and molecular genetic characterization of patients with congenital thrombocytopathias/thrombocytopenia is essential, since postoperative or posttraumatic bleeding often occurs due to undiagnosed platelet defects. Depending upon the kind of surgery or trauma, this bleeding may be life-threatening, e.g., after tonsillectomy or in brain surgery. Undiagnosed platelet defects may lead to additional surgery, hysterectomy, pulmonary bleeding, and even resuscitation. In addition, these increased bleeding symptoms can lead to wound healing problems. Only specialized laboratories can perform the special platelet function analyses (aggregometry, flow cytometry, or immunofluorescent microscopy of the platelets); therefore, many IPDs are still undetected.



Publication History

Received: 08 July 2021

Accepted: 08 October 2021

Article published online:
23 December 2021

© 2021. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Nurden AT, Nurden P. Congenital platelet disorders and understanding of platelet function. Br J Haematol 2014; 165 (02) 165-178
  • 2 Schlegel N, Bardet V, Kenet G, Muntean W, Zieger B, Nowak-Göttl U. Working Group on Standardisation in Perinatal and Pediatric Hemostasis. Diagnostic and therapeutic considerations on inherited platelet disorders in neonates and children. Klin Padiatr 2010; 222 (03) 209-214
  • 3 Noris P, Klersy C, Gresele P. et al; Italian Gruppo di Studio delle Piastrine. Platelet size for distinguishing between inherited thrombocytopenias and immune thrombocytopenia: a multicentric, real life study. Br J Haematol 2013; 162 (01) 112-119
  • 4 Zaninetti C, Greinacher A. Diagnosis of inherited platelet disorders on a blood smear. J Clin Med 2020; 9 (02) E539
  • 5 Futterer J, Dalby A, Lowe GC. et al; UK GAPP Study Group. Mutation in GNE is associated with severe congenital thrombocytopenia. Blood 2018; 132 (17) 1855-1858
  • 6 Uchiyama Y, Yanagisawa K, Kunishima S. et al. A novel CYCS mutation in the α-helix of the CYCS C-terminal domain causes non-syndromic thrombocytopenia. Clin Genet 2018; 94 (06) 548-553
  • 7 Seo A, Gulsuner S, Pierce S. et al. Inherited thrombocytopenia associated with mutation of UDP-galactose-4-epimerase (GALE). Hum Mol Genet 2019; 28 (01) 133-142
  • 8 Bernard J, Soulier JP. On a new variety of congenital thrombocytary hemo-ragiparous dystrophy [in French]. Sem Hop 1948; 24: 3217-3223
  • 9 Savoia A, Kunishima S, De Rocco D. et al. Spectrum of the mutations in Bernard-Soulier syndrome. Hum Mutat 2014; 35 (09) 1033-1045
  • 10 Kanda K, Kunishima S, Sato A, Abe D, Nishijima S, Ishigami T. A Brazilian case of Bernard-Soulier syndrome with two distinct founder mutations. Hum Genome Var 2017; 4: 17030
  • 11 Boeckelmann D, Hengartner H, Greinacher A. et al. Patients with Bernard-Soulier syndrome and different severity of the bleeding phenotype. Blood Cells Mol Dis 2017; 67: 69-74
  • 12 Kunishima S, Yamada T, Hamaguchi M, Saito H. Bernard-Soulier syndrome due to GPIX W127X mutation in Japan is frequently misdiagnosed as idiopathic thrombocytopenic purpura. Int J Hematol 2006; 83 (04) 366-367
  • 13 Ali S, Ghosh K, Shetty S. Novel genetic abnormalities in Bernard-Soulier syndrome in India. Ann Hematol 2014; 93 (03) 381-384
  • 14 Böckelmann D, Naz A, Siddiqi MYJ. et al. Bernard-Soulier syndrome in Pakistan: biochemical and molecular analyses leading to identification of a novel mutation in GP1BA. Haemophilia 2018; 24 (01) e18-e22
  • 15 Sumitha E, Jayandharan GR, David S. et al. Molecular basis of Bernard-Soulier syndrome in 27 patients from India. J Thromb Haemost 2011; 9 (08) 1590-1598
  • 16 Savoia A, Balduini CL, Savino M. et al. Autosomal dominant macrothrombocytopenia in Italy is most frequently a type of heterozygous Bernard-Soulier syndrome. Blood 2001; 97 (05) 1330-1335
  • 17 Vettore S, Scandellari R, Moro S. et al. Novel point mutation in a leucine-rich repeat of the GPIbalpha chain of the platelet von Willebrand factor receptor, GPIb/IX/V, resulting in an inherited dominant form of Bernard-Soulier syndrome affecting two unrelated families: the N41H variant. Haematologica 2008; 93 (11) 1743-1747
  • 18 Kunishima S, Naoe T, Kamiya T, Saito H. Novel heterozygous missense mutation in the platelet glycoprotein Ib beta gene associated with isolated giant platelet disorder. Am J Hematol 2001; 68 (04) 249-255
  • 19 Noris P, Perrotta S, Bottega R. et al. Clinical and laboratory features of 103 patients from 42 Italian families with inherited thrombocytopenia derived from the monoallelic Ala156Val mutation of GPIbα (Bolzano mutation). Haematologica 2012; 97 (01) 82-88
  • 20 Trizuljak J, Kozubík KS, Radová L. et al. A novel germline mutation in GP1BA gene N-terminal domain in monoallelic Bernard-Soulier syndrome. Platelets 2018; 29 (08) 827-833
  • 21 Nurden AT, Pillois X, Fiore M. et al. Expanding the mutation spectrum affecting αIIbβ3 integrin in Glanzmann thrombasthenia: screening of the ITGA2B and ITGB3 genes in a large international cohort. Hum Mutat 2015; 36 (05) 548-561
  • 22 Sandrock-Lang K, Oldenburg J, Wiegering V. et al. Characterisation of patients with Glanzmann thrombasthenia and identification of 17 novel mutations. Thromb Haemost 2015; 113 (04) 782-791
  • 23 Guillet B, Bayart S, Pillois X, Nurden P, Caen JP, Nurden AT. A Glanzmann thrombasthenia family associated with a TUBB1-related macrothrombocytopenia. J Thromb Haemost 2019; 17 (12) 2211-2215
  • 24 Nurden A. Profiling the genetic and molecular characteristics of Glanzmann thrombasthenia: can it guide current and future therapies?. J Blood Med 2021; 12: 581-599
  • 25 Nurden AT, Didry D, Kieffer N, McEver RP. Residual amounts of glycoproteins IIb and IIIa may be present in the platelets of most patients with Glanzmann's thrombasthenia. Blood 1985; 65 (04) 1021-1024
  • 26 Cesari E, Böckelmann D, Wiegand G, Icheva V, Zieger B. Biochemical and molecular genetic analysis of a patient with Glanzmann thrombasthenia revealed a novel likely pathogenic ITGA2B variant. J Blood Transfus Dis 2019; 2 (01) 36-39
  • 27 Kunicki TJ, Ruggeri ZM. Platelet collagen receptors and risk prediction in stroke and coronary artery disease. Circulation 2001; 104 (13) 1451-1453
  • 28 Dumont B, Lasne D, Rothschild C. et al. Absence of collagen-induced platelet activation caused by compound heterozygous GPVI mutations. Blood 2009; 114 (09) 1900-1903
  • 29 Nieswandt B, Watson SP. Platelet-collagen interaction: is GPVI the central receptor?. Blood 2003; 102 (02) 449-461
  • 30 Lecchi A, Razzari C, Paoletta S. et al. Identification of a new dysfunctional platelet P2Y12 receptor variant associated with bleeding diathesis. Blood 2015; 125 (06) 1006-1013
  • 31 Daly ME, Dawood BB, Lester WA. et al. Identification and characterization of a novel P2Y 12 variant in a patient diagnosed with type 1 von Willebrand disease in the European MCMDM-1VWD study. Blood 2009; 113 (17) 4110-4113
  • 32 Mundell SJ, Rabbolini D, Gabrielli S. et al. Receptor homodimerization plays a critical role in a novel dominant negative P2RY12 variant identified in a family with severe bleeding. J Thromb Haemost 2018; 16 (01) 44-53
  • 33 Kelley MJ, Jawien W, Ortel TL, Korczak JF. Mutation of MYH9, encoding non-muscle myosin heavy chain A, in May-Hegglin anomaly. Nat Genet 2000; 26 (01) 106-108
  • 34 Kunishima S, Matsushita T, Kojima T. et al. Immunofluorescence analysis of neutrophil nonmuscle myosin heavy chain-A in MYH9 disorders: association of subcellular localization with MYH9 mutations. Lab Invest 2003; 83 (01) 115-122
  • 35 Pecci A, Klersy C, Gresele P. et al. MYH9-related disease: a novel prognostic model to predict the clinical evolution of the disease based on genotype-phenotype correlations. Hum Mutat 2014; 35 (02) 236-247
  • 36 Donada A, Balayn N, Sliwa D. et al. Disrupted filamin A/αIIbβ3 interaction induces macrothrombocytopenia by increasing RhoA activity. Blood 2019; 133 (16) 1778-1788
  • 37 Rosa JP, Raslova H, Bryckaert M. Filamin A: key actor in platelet biology. Blood 2019; 134 (16) 1279-1288
  • 38 Berrou E, Adam F, Lebret M. et al. Heterogeneity of platelet functional alterations in patients with filamin A mutations. Arterioscler Thromb Vasc Biol 2013; 33 (01) e11-e18
  • 39 Boutroux H, David B, Guéguen P. et al. ACTN1-related macrothrombocytopenia: a novel entity in the progressing field of pediatric thrombocytopenia. J Pediatr Hematol Oncol 2017; 39 (08) e515-e518
  • 40 Kunishima S, Nishimura S, Suzuki H, Imaizumi M, Saito H. TUBB1 mutation disrupting microtubule assembly impairs proplatelet formation and results in congenital macrothrombocytopenia. Eur J Haematol 2014; 92 (04) 276-282
  • 41 Candotti F. Clinical manifestations and pathophysiological mechanisms of the Wiskott-Aldrich syndrome. J Clin Immunol 2018; 38 (01) 13-27
  • 42 Sabri S, Foudi A, Boukour S. et al. Deficiency in the Wiskott-Aldrich protein induces premature proplatelet formation and platelet production in the bone marrow compartment. Blood 2006; 108 (01) 134-140
  • 43 Nurden P, Stritt S, Favier R, Nurden AT. Inherited platelet diseases with normal platelet count: phenotypes, genotypes and diagnostic strategy. Haematologica 2021; 106 (02) 337-350
  • 44 Kahr WH, Hinckley J, Li L. et al. Mutations in NBEAL2, encoding a BEACH protein, cause gray platelet syndrome. Nat Genet 2011; 43 (08) 738-740
  • 45 Rensing-Ehl A, Pannicke U, Zimmermann SY. et al. Gray platelet syndrome can mimic autoimmune lymphoproliferative syndrome. Blood 2015; 126 (16) 1967-1969
  • 46 Ambrosio AL, Di Pietro SM. Mechanism of platelet α-granule biogenesis: study of cargo transport and the VPS33B-VPS16B complex in a model system. Blood Adv 2019; 3 (17) 2617-2626
  • 47 Smith H, Galmes R, Gogolina E. et al. Associations among genotype, clinical phenotype, and intracellular localization of trafficking proteins in ARC syndrome. Hum Mutat 2012; 33 (12) 1656-1664
  • 48 Paterson AD, Rommens JM, Bharaj B. et al. Persons with Quebec platelet disorder have a tandem duplication of PLAU, the urokinase plasminogen activator gene. Blood 2010; 115 (06) 1264-1266
  • 49 Huizing M, Malicdan MCV, Wang JA. et al. Hermansky-Pudlak syndrome: mutation update. Hum Mutat 2020; 41 (03) 543-580
  • 50 Pennamen P, Le L, Tingaud-Sequeira A. et al. BLOC1S5 pathogenic variants cause a new type of Hermansky-Pudlak syndrome. Genet Med 2020; 22 (10) 1613-1622
  • 51 Doubková M, Trizuljak J, Vrzalová Z. et al. Novel genetic variant of HPS1 gene in Hermansky-Pudlak syndrome with fulminant progression of pulmonary fibrosis: a case report. BMC Pulm Med 2019; 19 (01) 178
  • 52 Hengst M, Naehrlich L, Mahavadi P. et al. Hermansky-Pudlak syndrome type 2 manifests with fibrosing lung disease early in childhood. Orphanet J Rare Dis 2018; 13 (01) 42
  • 53 Ammann S, Schulz A, Krägeloh-Mann I. et al. Mutations in AP3D1 associated with immunodeficiency and seizures define a new type of Hermansky-Pudlak syndrome. Blood 2016; 127 (08) 997-1006
  • 54 Barbosa MD, Nguyen QA, Tchernev VT. et al. Identification of the homologous beige and Chediak-Higashi syndrome genes. Nature 1996; 382 (6588): 262-265
  • 55 Toro C, Nicoli ER, Malicdan MC, Adams DR, Introne WJ. Chediak-Higashi syndrome. In: Adam MP, Ardinger HH, Pagon RA. et al., eds. GeneReviews® [Internet]. Seattle, WA: University of Washington; 1993
  • 56 Ménasché G, Pastural E, Feldmann J. et al. Mutations in RAB27A cause Griscelli syndrome associated with haemophagocytic syndrome. Nat Genet 2000; 25 (02) 173-176
  • 57 Stapley RJ, Pisareva VP, Pisarev AV, Morgan NV. SLFN14 gene mutations associated with bleeding. Platelets 2020; 31 (03) 407-410
  • 58 Nakamura L, Bertling A, Brodde MF. et al. First characterization of platelet secretion defect in patients with familial hemophagocytic lymphohistiocytosis type 3 (FHL-3). Blood 2015; 125 (02) 412-414
  • 59 Sandrock K, Nakamura L, Vraetz T, Beutel K, Ehl S, Zieger B. Platelet secretion defect in patients with familial hemophagocytic lymphohistiocytosis type 5 (FHL-5). Blood 2010; 116 (26) 6148-6150
  • 60 De Kock L, Freson K. The (patho)biology of SRC kinase in platelets and megakaryocytes. Medicina (Kaunas) 2020; 56 (12) 633
  • 61 Turro E, Greene D, Wijgaerts A. et al; BRIDGE-BPD Consortium. A dominant gain-of-function mutation in universal tyrosine kinase SRC causes thrombocytopenia, myelofibrosis, bleeding, and bone pathologies. Sci Transl Med 2016; 8 (328) 328ra30
  • 62 Mory A, Feigelson SW, Yarali N. et al. Kindlin-3: a new gene involved in the pathogenesis of LAD-III. Blood 2008; 112 (06) 2591
  • 63 Jurk K, Schulz AS, Kehrel BE. et al. Novel integrin-dependent platelet malfunction in siblings with leukocyte adhesion deficiency-III (LAD-III) caused by a point mutation in FERMT3. Thromb Haemost 2010; 103 (05) 1053-1064
  • 64 Canault M, Ghalloussi D, Grosdidier C. et al. Human CalDAG-GEFI gene (RASGRP2) mutation affects platelet function and causes severe bleeding. J Exp Med 2014; 211 (07) 1349-1362
  • 65 Daly ME. Transcription factor defects causing platelet disorders. Blood Rev 2017; 31 (01) 1-10
  • 66 Songdej N, Rao AK. Hematopoietic transcription factor mutations and inherited platelet dysfunction. F1000Prime Rep 2015; 7: 66
  • 67 Hayashi Y, Harada Y, Huang G, Harada H. Myeloid neoplasms with germ line RUNX1 mutation. Int J Hematol 2017; 106 (02) 183-188
  • 68 Topka S, Vijai J, Walsh MF. et al. Germline ETV6 mutations confer susceptibility to acute lymphoblastic leukemia and thrombocytopenia. PLoS Genet 2015; 11 (06) e1005262
  • 69 Lordier L, Bluteau D, Jalil A. et al. RUNX1-induced silencing of non-muscle myosin heavy chain IIB contributes to megakaryocyte polyploidization. Nat Commun 2012; 3: 717
  • 70 Latger-Cannard V, Philippe C, Bouquet A. et al. Haematological spectrum and genotype-phenotype correlations in nine unrelated families with RUNX1 mutations from the French network on inherited platelet disorders. Orphanet J Rare Dis 2016; 11: 49
  • 71 Owen CJ, Toze CL, Koochin A. et al. Five new pedigrees with inherited RUNX1 mutations causing familial platelet disorder with propensity to myeloid malignancy. Blood 2008; 112 (12) 4639-4645
  • 72 Luo X, Feurstein S, Mohan S. et al. ClinGen Myeloid Malignancy Variant Curation Expert Panel recommendations for germline RUNX1 variants. Blood Adv 2019; 3 (20) 2962-2979
  • 73 Chisholm KM, Denton C, Keel S. et al. Bone marrow morphology associated with germline RUNX1 mutations in patients with familial platelet disorder with associated myeloid malignancy. Pediatr Dev Pathol 2019; 22 (04) 315-328
  • 74 Kwiatkowski BA, Bastian LS, Bauer Jr TR, Tsai S, Zielinska-Kwiatkowska AG, Hickstein DD. The ets family member Tel binds to the Fli-1 oncoprotein and inhibits its transcriptional activity. J Biol Chem 1998; 273 (28) 17525-17530
  • 75 Poggi M, Canault M, Favier M. et al. Germline variants in ETV6 underlie reduced platelet formation, platelet dysfunction and increased levels of circulating CD34+ progenitors. Haematologica 2017; 102 (02) 282-294
  • 76 Melazzini F, Palombo F, Balduini A. et al. Clinical and pathogenic features of ETV6-related thrombocytopenia with predisposition to acute lymphoblastic leukemia. Haematologica 2016; 101 (11) 1333-1342
  • 77 Favier R, Jondeau K, Boutard P. et al. Paris-Trousseau syndrome : clinical, hematological, molecular data of ten new cases. Thromb Haemost 2003; 90 (05) 893-897
  • 78 Hart A, Melet F, Grossfeld P. et al. Fli-1 is required for murine vascular and megakaryocytic development and is hemizygously deleted in patients with thrombocytopenia. Immunity 2000; 13 (02) 167-177
  • 79 Raslova H, Komura E, Le Couédic JP. et al. FLI1 monoallelic expression combined with its hemizygous loss underlies Paris-Trousseau/Jacobsen thrombopenia. J Clin Invest 2004; 114 (01) 77-84
  • 80 Gresele P, Falcinelli E, Bury L. Inherited platelet function disorders. Diagnostic approach and management. Hamostaseologie 2016; 36 (04) 265-278
  • 81 Stockley J, Morgan NV, Bem D. et al; UK Genotyping and Phenotyping of Platelets Study Group. Enrichment of FLI1 and RUNX1 mutations in families with excessive bleeding and platelet dense granule secretion defects. Blood 2013; 122 (25) 4090-4093
  • 82 Saultier P, Vidal L, Canault M. et al. Macrothrombocytopenia and dense granule deficiency associated with FLI1 variants: ultrastructural and pathogenic features. Haematologica 2017; 102 (06) 1006-1016
  • 83 Monteferrario D, Bolar NA, Marneth AE. et al. A dominant-negative GFI1B mutation in the gray platelet syndrome. N Engl J Med 2014; 370 (03) 245-253
  • 84 Marneth AE, van Heerde WL, Hebeda KM. et al. Platelet CD34 expression and α/δ-granule abnormalities in GFI1B- and RUNX1-related familial bleeding disorders. Blood 2017; 129 (12) 1733-1736
  • 85 Wijgaerts A, Wittevrongel C, Thys C. et al. The transcription factor GATA1 regulates NBEAL2 expression through a long-distance enhancer. Haematologica 2017; 102 (04) 695-706
  • 86 Freson K, Wijgaerts A, Van Geet C. GATA1 gene variants associated with thrombocytopenia and anemia. Platelets 2017; 28 (07) 731-734
  • 87 Pippucci T, Savoia A, Perrotta S. et al. Mutations in the 5′ UTR of ANKRD26, the ankirin repeat domain 26 gene, cause an autosomal-dominant form of inherited thrombocytopenia, THC2. Am J Hum Genet 2011; 88 (01) 115-120
  • 88 Marconi C, Canobbio I, Bozzi V. et al. 5'UTR point substitutions and N-terminal truncating mutations of ANKRD26 in acute myeloid leukemia. J Hematol Oncol 2017; 10 (01) 18
  • 89 Noris P, Perrotta S, Seri M. et al. Mutations in ANKRD26 are responsible for a frequent form of inherited thrombocytopenia: analysis of 78 patients from 21 families. Blood 2011; 117 (24) 6673-6680
  • 90 Pecci A, Balduini CL. Lessons in platelet production from inherited thrombocytopenias. Br J Haematol 2014; 165 (02) 179-192
  • 91 Ballmaier M, Germeshausen M, Schulze H. et al. c-mpl mutations are the cause of congenital amegakaryocytic thrombocytopenia. Blood 2001; 97 (01) 139-146
  • 92 Savoia A, Dufour C, Locatelli F. et al. Congenital amegakaryocytic thrombocytopenia: clinical and biological consequences of five novel mutations. Haematologica 2007; 92 (09) 1186-1193
  • 93 Germeshausen M, Ancliff P, Estrada J. et al. MECOM-associated syndrome: a heterogeneous inherited bone marrow failure syndrome with amegakaryocytic thrombocytopenia. Blood Adv 2018; 2 (06) 586-596
  • 94 Horvat-Switzer RD, Thompson AA. HOXA11 mutation in amegakaryocytic thrombocytopenia with radio-ulnar synostosis syndrome inhibits megakaryocytic differentiation in vitro. Blood Cells Mol Dis 2006; 37 (01) 55-63
  • 95 Albers CA, Newbury-Ecob R, Ouwehand WH, Ghevaert C. New insights into the genetic basis of TAR (thrombocytopenia-absent radii) syndrome. Curr Opin Genet Dev 2013; 23 (03) 316-323
  • 96 Levin C, Koren A, Pretorius E. et al. Deleterious mutation in the FYB gene is associated with congenital autosomal recessive small-platelet thrombocytopenia. J Thromb Haemost 2015; 13 (07) 1285-1292
  • 97 Suzuki J, Umeda M, Sims PJ, Nagata S. Calcium-dependent phospholipid scrambling by TMEM16F. Nature 2010; 468 (7325): 834-838
  • 98 Munnix IC, Harmsma M, Giddings JC. et al. Store-mediated calcium entry in the regulation of phosphatidylserine exposure in blood cells from Scott patients. Thromb Haemost 2003; 89 (04) 687-695
  • 99 Misceo D, Holmgren A, Louch WE. et al. A dominant STIM1 mutation causes Stormorken syndrome. Hum Mutat 2014; 35 (05) 556-564
  • 100 Borsani O, Piga D, Costa S. et al. Stormorken syndrome caused by a p.R304W STIM1 mutation: the first Italian patient and a review of the literature. Front Neurol 2018; 9: 859
  • 101 Manchev VT, Hilpert M, Berrou E. et al. A new form of macrothrombocytopenia induced by a germ-line mutation in the PRKACG gene. Blood 2014; 124 (16) 2554-2563