Synthesis 2022; 54(06): 1461-1477
DOI: 10.1055/a-1677-6619
review

Site-Selective C(sp3)–H Functionalizations Mediated by Hydrogen Atom Transfer Reactions via α-Amino/α-Amido Radicals

,
The authors thank the Alexander von Humboldt Foundation for funding, provided within the framework of the Sofja Kovalevskaja Award endowed by the German Federal Ministry of Education and Research.


Abstract

Amines and amides, as N-containing compounds, are ubiquitous in pharmaceutically-active scaffolds, natural products, agrochemicals, and peptides. Amides in nature bear a key responsibility for imparting three-dimensional structure, such as in proteins. Structural modifications to amines and amides, especially at their positions α to N, bring about profound changes in biological activity oftentimes leading to more desirable pharmacological profiles of small drug molecules. A number of recent developments in synthetic methodology for the functionalizations of amines and amides omit the need of their directing groups or pre-functionalizations, achieving direct activation of the otherwise relatively benign C(sp3)–H bonds α to N. Among these, hydrogen atom transfer (HAT) has proven a very powerful platform for the selective activation of amines and amides to their α-amino and α-amido radicals, which can then be employed to furnish C–C and C–X (X = heteroatom) bonds. The abilities to both form these radicals and control their reactivity in a site-selective manner is of utmost importance for such chemistries to witness applications in late-stage functionalization. Therefore, this review captures contemporary HAT strategies to realize chemo- and regioselective amine and amide α-C(sp3)–H functionalization, based on bond strengths, bond polarities, reversible HAT equilibria, traceless electrostatic-directing auxiliaries, and steric effects of in situ-generated HAT agents.

1 Introduction

2 Functionalizations of Amines

3 Functionalizations of Carbamates

4 Functionalizations of Amides

5 Conclusion



Publikationsverlauf

Eingereicht: 20. September 2021

Angenommen nach Revision: 25. Oktober 2021

Accepted Manuscript online:
25. Oktober 2021

Artikel online veröffentlicht:
02. Februar 2022

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

    • 1a Endoma-Arias MA. A, Cox DP, Hudlicky T. Adv. Synth. Catal. 2013; 355: 1869
    • 1b Prommer E. Supportive Care Cancer 2006; 14: 109
  • 2 Ashraf Z, Mahmood T, Hassan M, Afzal S, Rafique H, Afzal K, Latip J. Drug Des., Dev. Ther. 2019; 13: 1643
  • 3 Gothoskar SV, Benjamin T, Roller PP, Weisburger EK. Xenobiotica 1979; 9: 533
  • 4 Cannalire R, Pelliccia S, Sancineto L, Novellino E, Tron GC, Giustiniano M. Chem. Soc. Rev. 2021; 50: 766
  • 6 Dutta S, Li B, Rickertsen DR. L, Valles DA, Seidel D. SynOpen 2021; 5: 173
    • 7a Gandeepan P, Müller T, Zell D, Cera G, Warratz S, Ackermann L. Chem. Rev. 2019; 119: 2192
    • 7b Dong Z, Ren Z, Thompson SJ, Xu Y, Dong G. Chem. Rev. 2017; 117: 9333
    • 7c Gandeepan P, Ackermann L. Chem 2018; 4: 199
    • 7d Rasheed OK, Sun B. ChemistrySelect 2018; 3: 5689
    • 7e Chu JC. K, Rovis T. Angew. Chem. Int. Ed. 2018; 57: 62
    • 7f Gandeepan P, Cheng CH. Chem. Asian J. 2015; 10: 824
    • 7g Qin Y, Zhu L, Luo S. Chem. Rev. 2017; 117: 9433
    • 7h Davies HM. L, Morton D. ACS Cent. Sci. 2017; 3: 936
    • 7i Cernak T, Dykstra KD, Tyagarajan S, Vachal P, Krska SW. Chem. Soc. Rev. 2016; 45: 546
  • 8 Prier CK, Rankic DA, MacMillan DW. C. Chem. Rev. 2013; 113: 5322
    • 9a Aycock RA, Pratt CJ, Jui NT. ACS Catal. 2018; 8: 9115
    • 9b McManus JB, Onuska NP. R, Nicewicz AD. J. Am. Chem. Soc. 2018; 140: 9056
    • 9c Constantin T, Zanini M, Regni AN, Sheikh S, Juliá F, Leonori D. Science 2020; 367: 1021
    • 9d Caiger L, Sinton C, Constantin T, Douglas JJ, Sheikh NS, Juliá F, Leonori D. Chem. Sci. 2021; 12: 10448
    • 10a Xiong T, Zhang Q. Chem. Soc. Rev. 2016; 45: 3069
    • 10b Yu XY, Zhao QQ, Chen J, Xiao WJ, Chen JR. Acc. Chem. Res. 2020; 53: 1066
  • 11 Kumar G, Pradhan S, Chatterjee I. Chem. Asian J. 2020; 15: 651
  • 12 Cooley JH, Evain EJ. Synthesis 1989; 1
    • 13a Braun VJ. Chem. Ber. 1909; 42: 2035
    • 13b Braun VJ. Chem. Ber. 1911; 44: 1252
  • 14 Olofson RA, Schnur RC, Bunes L, Pepe JP. Tetrahedron Lett. 1977; 18: 1567
    • 15a McCamley K, Ripper JA, Singer RD, Scammells PJ. J. Org. Chem. 2003; 68: 9847
    • 15b Singh G, Koerner TB, Godefroy SB, Armand C. Bioorg. Med. Chem. Lett. 2012; 22: 2160
  • 16 Barham JP, John MP, Murphy JA. J. Am. Chem. Soc. 2016; 138: 15482
    • 17a Wu S, Žurauskas J, Domański M, Hitzfeld PS, Butera V, Scott DJ, Rehbein J, Kumar A, Thyrhaug E, Hauer J, Barham JP. Org. Chem. Front. 2021; 8: 1132
    • 17b Jahn U, Aussieker S. Org. Lett. 1999; 1: 849
    • 17c Walter RI. J. Am. Chem. Soc. 1955; 77: 5999
  • 18 Duncton MA. J. Med. Chem. Commun. 2011; 2: 1135
  • 19 Bergamaschi E, Weike C, Mayerhofer VJ, Funes-Ardoiz I, Teskey CJ. Org. Lett. 2021; 23: 5378
    • 20a Burget D, Jacques P, Vauthey E, Suppan P, Haselbach E. J. Chem. Soc., Faraday Trans. 1994; 90: 2481
    • 20b Fukuzumi S, Yuasa J, Satoh N, Suenobu T. J. Am. Chem. Soc. 2004; 126: 7585
  • 21 Ide T, Barham JP, Fujita M, Kawato Y, Egami H, Hamashima Y. Chem. Sci. 2018; 9: 8453
  • 22 McNally A, Prier CK, MacMillan DW. C. Science 2011; 334: 1114
  • 23 Kobayashi F, Fujita M, Ide T, Ito Y, Yamashita K, Egami H, Hamashima Y. ACS Catal. 2021; 11: 82
    • 24a Shen Y, Funez-Ardoiz I, Schoenebeck F, Rovis T. J. Am. Chem. Soc. 2021; 143: 18952
    • 24b While this manuscript was in press, another N-methyl selective process was reported by the same group involving nickel catalysis: Shen Y, Rovis T. J. Am. Chem. Soc. 2021; 143: 16364
  • 25 Mandigma MJ. P, Žurauskas J, MacGregor CI, Edwards LJ, Shahin A, d’Heureuse L, Yip P, Birch DJ. S, Gruber T, Heilmann J, John MP, Barham JP. Chem. Sci. 2022; 13: 1912
  • 26 Shaw MH, Shurtleff VW, Terrett JA, Cuthbertson JD, MacMillan DW. C. Science 2016; 352: 1304
  • 27 Le C, Liang Y, Evans RW, Li X, MacMillan DW. C. Nature 2017; 547: 79
  • 28 Ye J, Kalvet I, Schoenebeck F, Rovis T. Nat. Chem. 2018; 10: 1037
  • 29 Dong J, Xia Q, Lv X, Yan C, Song H, Liu Y, Wang Q. Org. Lett. 2018; 20: 5661
  • 30 Dai C, Meschini F, Narayanam JM. R, Stephenson CR. J. J. Org. Chem. 2012; 77: 4425
  • 31 Wang R, Bao W. Tetrahedron 2015; 71: 6997
    • 32a Pines H, Simonik J. J. Org. Chem. 1971; 36: 2311
    • 32b Suzuki H, Sato I, Yamashita Y, Kobayashi S. J. Am. Chem. Soc. 2015; 137: 4336
    • 32c Suzuki H, Igarashi R, Yamashita Y, Kobayashi S. Angew. Chem. Int. Ed. 2017; 56: 4520
    • 32d Barham JP, Tamaoki S, Egami H, Ohneda N, Okamoto T, Odajima H, Hamashima Y. Org. Biomol. Chem. 2018; 16: 7568
    • 32e Barham JP, Fouquet TN. J, Norikane Y. Org. Biomol. Chem. 2020; 18: 2063
  • 33 Das S, Murugesan K, Villegas Rodríguez GJ, Kaur J, Barham JP, Savateev A, Antonietti M, König B. ACS Catal. 2021; 11: 1593
  • 34 Echeverria V, Zeitlin R. CNS Neurosci. Ther. 2012; 18: 517
  • 35 Kaur J, Shahin A, Barham JP. Org. Lett. 2021; 23: 2002
  • 36 Wang J, Li J, Huang J, Zhu Q. J. Org. Chem. 2016; 81: 3017
  • 37 Proctor RS. J, Chuentragool P, Colgan AC, Phipps RJ. J. Am. Chem. Soc. 2021; 143: 4928
  • 38 Magueur G, Crousse B, Ourévitch M, Bonnet-Delpon D, Bégué JP. J. Fluorine Chem. 2006; 127: 637
  • 39 Guo YQ, Wu Y, Wang R, Song H, Liu Y, Wang Q. Org. Lett. 2021; 23: 2353
  • 40 Zhou J, Ren Q, Xu N, Wang C, Song S, Chen Z, Li J. Green Chem. 2021; 23: 5753

    • Promising future directions include: 1. The direct HAT activation of unprotected 2° amines which was recently achieved, see:
    • 41a Ryder AS. H, Cunningham WB, Ballatyne G, Mules T, Kinsella AG, Turner-Dore J, Alder CM, Edwards LJ, Mckay BS. J, Grayson MJ, Cresswell AJ. Angew. Chem. Int. Ed. 2020; 59: 14986
    • 41b Askey HE, Grayson JD, Tibbetts JD, Turner-Dore JC, Holmes JM, Kociok-Kohn G, Wrigley GL, Cresswell AJ. J. Am. Chem. Soc. 2021; 143: 15936 ; and 2. The remote functionalization of alkyl halides proposed to occur via halogen atom transfer to α-amino radicals, which tolerates amide N-CH2 positions, see refs 9c,d