Synthesis 2022; 54(05): 1157-1202
DOI: 10.1055/a-1679-8205
review

Triflic Anhydride (Tf2O)-Activated Transformations of Amides, Sulfoxides and Phosphorus Oxides via Nucleophilic Trapping

Hai Huang
a   Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. of China
,
Jun Yong Kang
b   Department of Chemistry and Biochemistry, University of Nevada Las Vegas, 4505 South Maryland Parkway, Las Vegas, NV 89154-4003, USA
› Institutsangaben
This work was supported by the University of Nevada Las Vegas.


Abstract

Trifluoromethanesulfonic anhydride (Tf2O) is utilized as a strong electrophilic activator in a wide range of applications in synthetic organic chemistry, leading to the transient generation of a triflate intermediate. This versatile triflate intermediate undergoes nucleophilic trapping with diverse nucleophiles to yield novel compounds. In this review, we describe the features and applications of triflic anhydride in organic synthesis reported in the past decade, especially in amide, sulfoxide, and phosphorus oxide chemistry through electrophilic activation. A plausible mechanistic pathway for each important reaction is also discussed.

1 Introduction

2 Amide Chemistry

2.1 Carbon Nucleophiles

2.2 Hydrogen Nucleophiles

2.3 Nitrogen Nucleophiles

2.4 Oxygen and Sulfur Nucleophiles

2.5 hosphorus Nucleophiles

2.6 A Vilsmeier-Type Reagent

2.7 Umpolung Reactivity in Amides

3 Sulfoxide Chemistry

3.1 Oxygen Nucleophiles

3.2 Carbon Nucleophiles

3.3 Nitrogen Nucleophiles

3.4 Thionium Reagents

4 Phosphorus Chemistry

4.1 Hendrickson’s Reagent

4.2 Diaryl Phosphine Oxides

4.3 Phosphonates, Phosphates and Phosphinates

5 Conclusion and Outlook



Publikationsverlauf

Eingereicht: 08. September 2021

Angenommen nach Revision: 27. Oktober 2021

Accepted Manuscript online:
27. Oktober 2021

Artikel online veröffentlicht:
04. Januar 2022

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Martínez AG, Subramanian LR, Hanack M, Williams SJ, Régnier S. Trifluoromethanesulfonic Anhydride . In Encyclopedia of Reagents for Organic Synthesis . John Wiley & Sons; Chichester, UK: 2016: 1-17
  • 2 Stang PJ, Anderson AG. J. Org. Chem. 1976; 41: 781
  • 3 Baraznenok IL, Nenajdenko VG, Balenkova ES. Tetrahedron 2000; 56: 3077
  • 4 Chassaing S, Specklin S, Weibel J.-M, Pale P. Tetrahedron 2012; 68: 7245
  • 5 Kaiser D, Maulide N. J. Org. Chem. 2016; 81: 4421
    • 6a Hofmann A. Ber. Dtsch. Chem. Ges. 1881; 14: 2725
    • 6b Morgan GT, Walls LP. J. Chem. Soc. 1931; 2447
    • 6c Bischler A, Napieralski B. Ber. Dtsch. Chem. Ges. 1893; 26: 1903
    • 6d Vilsmeier A, Haack A. Ber. Dtsch. Chem. Ges. (Ser. A and B) 1927; 60: 119
  • 8 Falmagne J.-B, Escudero J, Taleb-Sahraoui S, Ghosez L. Angew. Chem. Int. Ed. 1981; 20: 879
    • 9a White KL, Mewald M, Movassaghi M. J. Org. Chem. 2015; 80: 7403
    • 9b Charette AB, Grenon M. Can. J. Chem. 2001; 79: 1694
  • 10 Tomashenko O, Sokolov V, Tomashevskiy A, Buchholz HA, Welz-Biermann U, Chaplinski V, de Meijere A. Eur. J. Org. Chem. 2008; 5107
  • 11 Xiao K.-J, Luo J.-M, Ye K.-Y, Wang Y, Huang P.-Q. Angew. Chem. Int. Ed. 2010; 49: 3037
    • 12a Xiao K.-J, Luo J.-M, Xia X.-E, Wang Y, Huang P.-Q. Chem. Eur. J. 2013; 19: 13075
    • 12b Huo H.-H, Zhang H.-K, Xia X.-E, Huang P.-Q. Org. Lett. 2012; 14: 4834
  • 13 Huo H.-H, Xia X.-E, Zhang H.-K, Huang P.-Q. J. Org. Chem. 2013; 78: 455
  • 14 Xiao K.-J, Wang Y, Ye K.-Y, Huang P.-Q. Chem. Eur. J. 2010; 16: 12792
  • 15 Xiao K.-J, Wang Y, Huang Y.-H, Wang X.-G, Huang P.-Q. J. Org. Chem. 2013; 78: 8305
  • 16 Xiao K.-J, Wang A.-E, Huang P.-Q. Angew. Chem. Int. Ed. 2012; 51: 8314
  • 17 Huang P.-Q, Huang Y.-H, Xiao K.-J, Wang Y, Xia X.-E. J. Org. Chem. 2015; 80: 2861
  • 18 Chen H, Huang Y.-H, Ye J.-L, Huang P.-Q. J. Org. Chem. 2019; 84: 9270
  • 19 Suto T, Yanagita Y, Nagashima Y, Takikawa S, Kurosu Y, Matsuo N, Sato T, Chida N. J. Am. Chem. Soc. 2017; 139: 2952
  • 20 Oger C, Balas L, Durand T, Galano J.-M. Chem. Rev. 2013; 113: 1313
  • 21 Nahm S, Weinreb SM. Tetrahedron Lett. 1981; 22: 3815
  • 22 Bechara WS, Pelletier G, Charette AB. Nat. Chem. 2012; 4: 228
    • 23a Xiao K.-J, Wang A.-E, Huang Y.-H, Huang P.-Q. Asian J. Org. Chem. 2012; 1: 130
    • 23b Huang P.-Q, Wang Y, Xiao K.-J, Huang Y.-H. Tetrahedron 2015; 71: 4248
  • 24 Huang P.-Q, Huang Y.-H, Geng H, Ye J.-L. Sci. Rep. 2016; 6: 28801
  • 25 Li J, Oost R, Maryasin B, González L, Maulide N. Nat. Commun. 2019; 10: 2327
  • 26 Huang P.-Q, Huang Y.-H, Xiao K.-J. J. Org. Chem. 2016; 81: 9020
  • 27 Mátravölgyi B, Hergert T, Bálint E, Bagi P, Faigl F. J. Org. Chem. 2018; 83: 2282
  • 28 Li L.-H, Niu Z.-J, Liang Y.-M. Org. Biomol. Chem. 2018; 16: 7792
  • 29 Bhujanga Rao C, Zhang N, Hu J, Wang Y, Liang Y, Zhang R, Yuan J, Dong D. J. Org. Chem. 2020; 85: 4695
  • 30 Wang A.-E, Yu C.-C, Chen T.-T, Liu Y.-P, Huang P.-Q. Org. Lett. 2018; 20: 999
  • 31 Huang Y.-H, Wang S.-R, Wu D.-P, Huang P.-Q. Org. Lett. 2019; 21: 1681
    • 32a Ye J.-L, Zhu Y.-N, Geng H, Huang P.-Q. Sci. China Chem. 2017; 61: 687
    • 32b Li L.-H, Niu Z.-J, Liang Y.-M. Chem. Eur. J. 2017; 23: 15300
  • 33 Magyar CL, Wall TJ, Davies SB, Campbell MV, Barna HA, Smith SR, Savich CJ, Mosey RA. Org. Biomol. Chem. 2019; 17: 7995
  • 34 Huang P.-Q, Ou W, Xiao K.-J, Wang A.-E. Chem. Commun. 2014; 50: 8761
  • 35 Huang P.-Q, Ou W, Ye J.-L. Org. Chem. Front. 2015; 2: 1094
  • 36 Huang P.-Q, Ou W. Eur. J. Org. Chem. 2017; 582
  • 37 Shoji T, Inoue Y, Ito S. Tetrahedron Lett. 2012; 53: 1493
  • 38 Pelletier G, Bechara WS, Charette AB. J. Am. Chem. Soc. 2010; 132: 12817
    • 39a Xiang S.-H, Xu J, Yuan H.-Q, Huang P.-Q. Synlett 2010; 1829
    • 39b Huang P.-Q, Geng H. Org. Chem. Front. 2015; 2: 150
    • 39c Huang P.-Q, Lang Q.-W, Wang Y.-R. J. Org. Chem. 2016; 81: 4235
  • 40 Chen H, Ye J.-L, Huang P.-Q. Org. Chem. Front. 2018; 5: 943
  • 41 Huang P.-Q, Lang Q.-W, Wang A.-E, Zheng J.-F. Chem. Commun. 2015; 51: 1096
  • 42 Zheng J.-F, Qian X.-Y, Huang P.-Q. Org. Chem. Front. 2015; 2: 927
  • 43 Huang P.-Q, Lang Q.-W, Hu X.-N. J. Org. Chem. 2016; 81: 10227
  • 44 Wang J, He Z, Chen X, Song W, Lu P, Wang Y. Tetrahedron 2010; 66: 1208
  • 45 Quadri SA. I, Das TC, Farooqui M. ChemistrySelect 2017; 2: 1802
  • 46 Ellsworth AA, Magyar CL, Hubbell GE, Theisen CC, Holmes D, Mosey RA. Tetrahedron 2016; 72: 6380
  • 47 Pelletier G, Charette AB. Org. Lett. 2013; 15: 2290
  • 48 Régnier S, Bechara WS, Charette AB. J. Org. Chem. 2016; 81: 10348
  • 49 Law RP, Ukuser S, Tape DT, Talbot EP. A. Synthesis 2017; 49: 3775
  • 50 Bechara WS, Khazhieva IS, Rodriguez E, Charette AB. Org. Lett. 2015; 17: 1184
  • 51 Cyr P, Régnier S, Bechara WS, Charette AB. Org. Lett. 2015; 17: 3386
  • 52 Tona V, de la Torre A, Padmanaban M, Ruider S, González L, Maulide N. J. Am. Chem. Soc. 2016; 138: 8348
  • 53 Wei C.-X, Bian M, Gong G.-H. Molecules 2015; 20: 5528
  • 54 Tona V, Maryasin B, de la Torre A, Sprachmann J, González L, Maulide N. Org. Lett. 2017; 19: 2662
  • 55 Shah AA, Chenard LK, Tucker JW, Helal CJ. ACS Comb. Sci. 2017; 19: 675
  • 56 Ghandi M, Salahi S, Hasani M. Tetrahedron Lett. 2011; 52: 270
  • 57 Madelaine C, Valerio V, Maulide N. Angew. Chem. Int. Ed. 2010; 49: 1583
  • 58 Padmanaban M, Carvalho LC. R, Petkova D, Lee J.-W, Santos AS, Marques MM. B, Maulide N. Tetrahedron 2015; 71: 5994
  • 59 Valerio V, Petkova D, Madelaine C, Maulide N. Chem. Eur. J. 2013; 19: 2606
  • 60 Peng B, Geerdink D, Maulide N. J. Am. Chem. Soc. 2013; 135: 14968
  • 61 Myers AG, Yang BH, Chen H, McKinstry L, Kopecky DJ, Gleason JL. J. Am. Chem. Soc. 1997; 119: 6496
  • 62 Peng B, Geerdink D, Farès C, Maulide N. Angew. Chem. Int. Ed. 2014; 53: 5462
  • 63 Charette AB, Chua P. J. Org. Chem. 1998; 63: 908
  • 64 Khan IA, Saxena AK. Tetrahedron 2012; 68: 1272
  • 65 Wang A.-E, Chang Z, Sun W.-T, Huang P.-Q. Org. Lett. 2015; 17: 732
  • 66 Chen T.-T, Wang A.-E, Huang P.-Q. Org. Lett. 2019; 21: 3808
  • 67 Kobayashi Y, Nakatani T, Tanaka R, Okada M, Torii E, Harayama T, Kimachi T. Tetrahedron 2011; 67: 3457
  • 68 Huang P, Zhang N, Zhang R, Dong D. Org. Lett. 2012; 14: 370
  • 69 Kaiser D, de la Torre A, Shaaban S, Maulide N. Angew. Chem. Int. Ed. 2017; 56: 5921
  • 70 Di Mauro G, Maryasin B, Kaiser D, Shaaban S, González L, Maulide N. Org. Lett. 2017; 19: 3815
  • 71 Kaiser D, Teskey CJ, Adler P, Maulide N. J. Am. Chem. Soc. 2017; 139: 16040
  • 72 de la Torre A, Kaiser D, Maulide N. J. Am. Chem. Soc. 2017; 139: 6578
    • 73a Gonçalves CR, Lemmerer M, Teskey CJ, Adler P, Kaiser D, Maryasin B, González L, Maulide N. J. Am. Chem. Soc. 2019; 141: 18437
    • 73b Li J, Berger M, Zawodny W, Simaan M, Maulide N. Chem 2019; 5: 1883
  • 74 Zhang H, Riomet M, Roller A, Maulide N. Org. Lett. 2020; 22: 2376
  • 75 Pummerer R. Ber. Dtsch. Chem. Ges. 1909; 42: 2282
  • 76 Zhao X, Zeng J, Meng L, Wan Q. Chem. Rec. 2020; 20: 743
  • 77 Kobatake T, Yoshida S, Yorimitsu H, Oshima K. Angew. Chem. Int. Ed. 2010; 49: 2340
  • 78 Kobatake T, Fujino D, Yoshida S, Yorimitsu H, Oshima K. J. Am. Chem. Soc. 2010; 132: 11838
    • 79a Huang X, Maulide N. J. Am. Chem. Soc. 2011; 133: 8510
    • 79b Huang X, Patil M, Farès C, Thiel W, Maulide N. J. Am. Chem. Soc. 2013; 135: 7312
  • 80 Eberhart AJ, Imbriglio JE, Procter DJ. Org. Lett. 2011; 13: 5882
  • 81 Wenkert E, Shepard ME, McPhail AT. J. Chem. Soc., Chem. Commun. 1986; 1390
  • 82 Šiaučiulis M, Sapmaz S, Pulis AP, Procter DJ. Chem. Sci. 2018; 9: 754
  • 83 Eberhart AJ, Procter DJ. Angew. Chem. Int. Ed. 2013; 52: 4008
  • 84 Fernández-Salas JA, Eberhart AJ, Procter DJ. J. Am. Chem. Soc. 2016; 138: 790
  • 85 Hu G, Xu J, Li P. Org. Chem. Front. 2018; 5: 2167
  • 86 Huang X, Zhang Y, Liang W, Zhang Q, Zhan Y, Kong L, Peng B. Chem. Sci. 2020; 11: 3048
  • 87 Zhang Z, He P, Du H, Xu J, Li P. J. Org. Chem. 2019; 84: 4517
  • 88 Huang J, Hu G, An S, Chen D, Li M, Li P. J. Org. Chem. 2019; 84: 9758
  • 89 Liu G, Mori S, Wang X, Noritake S, Tokunaga E, Shibata N. New J. Chem. 2012; 36: 1769
  • 90 Vankar YD, Rao CT. Tetrahedron 1985; 41: 3405
  • 91 Shang L, Chang Y, Luo F, He J.-N, Huang X, Zhang L, Kong L, Li K, Peng B. J. Am. Chem. Soc. 2017; 139: 4211
  • 92 Zhang L, He J.-N, Liang Y, Hu M, Shang L, Huang X, Kong L, Wang Z.-X, Peng B. Angew. Chem. Int. Ed. 2019; 58: 5316
  • 93 Hori M, Nogi K, Nagaki A, Yorimitsu H. Asian J. Org. Chem. 2019; 8: 1084
  • 94 Gu Z.-y, Zhang J.-x, Xing G.-w. Chem. Asian J. 2012; 7: 1524
  • 95 Crich D, Li W. Org. Lett. 2006; 8: 959
  • 96 Wen P, Crich D. J. Org. Chem. 2015; 80: 12300
  • 97 Gu Z.-y, Zhang X.-t, Zhang J.-x, Xing G.-w. Org. Biomol. Chem. 2013; 11: 5017
  • 98 Liu G.-j, Zhang X.-t, Xing G.-w. Chem. Commun. 2015; 51: 12803
  • 99 Tayu M, Ishizaki T, Higuchi K, Kawasaki T. Org. Biomol. Chem. 2015; 13: 3863
  • 100 Tayu M, Higuchi K, Ishizaki T, Kawasaki T. Org. Lett. 2014; 16: 3613
  • 101 Tayu M, Hui Y, Takeda S, Higuchi K, Saito N, Kawasaki T. Org. Lett. 2017; 19: 6582
  • 102 Tayu M, Nomura K, Kawachi K, Higuchi K, Saito N, Kawasaki T. Chem. Eur. J. 2017; 23: 10925
    • 103a Hendrickson JB, Hussoin MS. J. Org. Chem. 1987; 52: 4137
    • 103b Hendrickson JB, Sternbach DD, Bair KW. Acc. Chem. Res. 1977; 10: 306
    • 103c Hendrickson JB, Hussoin MS. J. Org. Chem. 1989; 54: 1144
    • 103d Hendrickson JB, Hussoin MS. Synthesis 1989; 217
    • 103e Hendrickson JB, Schwartzman SM. Tetrahedron Lett. 1975; 16: 277
  • 104 Wu M, Wang S. Synthesis 2010; 587
  • 105 Loughlin WA, Jenkins ID, Petersson MJ. J. Org. Chem. 2013; 78: 7356
  • 106 Nguyen KT, Claiborne CF, McCauley JA, Libby BE, Claremon DA, Bednar RA, Mosser SD, Gaul SL, Connolly TM, Condra CL, Bednar B, Stump GL, Lynch JJ, Koblan KS, Liverton NJ. Bioorg. Med. Chem. Lett. 2007; 17: 3997
  • 107 Choueiry D, Giraud DL, Schotten T. WO2000078725, 2000
    • 108a Horsman GP, Zechel DL. Chem. Rev. 2017; 117: 5704
    • 108b Mucha A, Kafarski P, Berlicki Ł. J. Med. Chem. 2011; 54: 5955
    • 108c Duke SO, Powles SB. Pest. Manag. Sci. 2008; 64: 319
    • 108d Martin R, Buchwald SL. Acc. Chem. Res. 2008; 41: 1461
  • 109 Unoh Y, Hirano K, Miura M. J. Am. Chem. Soc. 2017; 139: 6106
  • 110 Huang H, Zhu H, Kang JY. Org. Lett. 2018; 20: 2778
  • 111 Nishimura K, Unoh Y, Hirano K, Miura M. Chem. Eur. J. 2018; 24: 13089
    • 112a Zhao W, Yan PK, Radosevich AT. J. Am. Chem. Soc. 2015; 137: 616
    • 112b Nykaza TV, Ramirez A, Harrison TS, Luzung MR, Radosevich AT. J. Am. Chem. Soc. 2018; 140: 3103
    • 113a Hashimoto S, Nakatsuka S, Nakamura M, Hatakeyama T. Angew. Chem. Int. Ed. 2014; 53: 14074
    • 113b Romero-Nieto C, López-Andarias A, Egler-Lucas C, Gebert F, Neus J.-P, Pilgram O. Angew. Chem. Int. Ed. 2015; 54: 15872
  • 114 Yang C.-H, Fan H, Li H, Hou S, Sun X, Luo D, Zhang Y, Yang Z, Chang J. Org. Lett. 2019; 21: 9438
  • 115 Wang J, Deng Y.-J, Yan X.-X, Liu Y.-J, Ge C.-P, Yan Y, Chao S, Zhou P.-X. Org. Chem. Front. 2020; 7: 715
  • 116 Yuan T, Huang S, Cai C, Lu G.-p. Org. Biomol. Chem. 2018; 16: 30
  • 117 Nishimura K, Hirano K, Miura M. Org. Lett. 2019; 21: 1467
  • 118 Baumgartner T, Réau R. Chem. Rev. 2006; 106: 4681
  • 119 Huang H, Denne J, Yang C.-H, Wang H, Kang JY. Angew. Chem. Int. Ed. 2018; 57: 6624
  • 120 Huang H, Ash J, Kang JY. Org. Lett. 2018; 20: 4938
  • 121 Ash J, Huang H, Kang JY. Org. Biomol. Chem. 2019; 17: 3812
    • 122a Fest C, Schmidt K.-J. The Chemistry of Organophosphorus Pesticides . Springer Science & Business Media; New York: 1982
    • 122b Quin LD. A Guide to Organophosphorus Chemistry . John Wiley & Sons; New York: 2000
  • 123 Ash J, Huang H, Cordero P, Kang JY. Org. Biomol. Chem. 2021; 19: 6007
  • 124 Adler P, Pons A, Li J, Heider J, Brutiu BR, Maulide N. Angew. Chem. Int. Ed. 2018; 57: 13330