Synthesis 2022; 54(05): 1217-1230
DOI: 10.1055/a-1684-2942
short review

Enantioselective Syntheses of Yohimbine Alkaloids: Proving Grounds for New Catalytic Transformations

Eric R. Miller
,
National Institute of General Medical Sciences (R35GM136440).


Abstract

The total synthesis of bioactive alkaloids is an enduring challenge and an indication of the state of the art of chemical synthesis. With the explosion of catalytic asymmetric methods over the past three decades, these compelling targets have been fertile proving grounds for enantioselective bond forming transformations. These activities are summarized herein both to highlight the power and versatility of these methods and to instill future inspiration for new syntheses of these privileged natural products.

1 Introduction

2 Monoterpenoid Indole Alkaloids

2.1 Corynanthe-Type MIAs

3 Biosynthesis

4 Biological Activity

5 Scope

6 Strategies in Yohimbine Alkaloid Synthesis

6.1 Momose’s Formal Synthesis of (+)-Yohimbine

6.2 Jacobsen’s Synthesis of (+)-Yohimbine

6.3 Hiemstra’s Synthesis of (+)-Yohimbine

6.4 Qin’s Synthesis of (–)-Yohimbine

6.5 Tan’s Synthesis of (+)-Rauwolscine

6.6 Jacobsen’s Synthesis of (+)-Reserpine

6.7 Chen’s Synthesis of (+)-Reserpine

6.8 Riva’s Synthesis of (–)-Alloyohimbane

6.9 Katsuki’s Synthesis of (–)-Alloyohimbane

6.10 Ghosh’s Synthesis of (–)-Yohimbane and (–)-Alloyohimbane

6.11 Hong’s Synthesis of (–)-Yohimbane

6.12 Gellman’s Synthesis of (–)-Yohimbane

6.13 Scheidt’s Synthesis of (–)-Rauwolscine and (–)-Alloyohimbane

7 Conclusion



Publikationsverlauf

Eingereicht: 21. September 2021

Angenommen nach Revision: 02. November 2021

Publikationsdatum:
02. November 2021 (online)

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Newman DJ, Cragg GM. J. Nat. Prod. 2016; 79: 629
  • 2 Wright PM, Seiple IB, Myers AG. Angew. Chem. Int. Ed. 2014; 53: 8840
  • 3 Wender PA, Hardman CT, Ho S, Jeffreys MS, Maclaren JK, Quiroz RV, Ryckbosch SM, Shimizu AJ, Sloane JL, Stevens MC. Science 2017; 358: 218
  • 4 Tong Y, Deng Z. Synth. Syst. Biotechnol. 2020; 5: 92
  • 5 Butlen-Ducuing F, Pétavy F, Guizzaro L, Zienowicz M, Salmonson T, Haas M, Corruble E, Alteri E. Nat. Rev. Drug Discov. 2016; 15: 813
  • 6 Kesselheim AS, Hwang TJ, Franklin JM. Nat. Rev. Drug Discov. 2015; 14: 815
  • 7 Woodward RB, Bader FE, Bickel H, Frey AJ, Kierstead RW. J. Am. Chem. Soc. 1956; 78: 2023
  • 8 Woodward RB, Bader FE, Bickel H, Frey AJ, Kierstead RW. Tetrahedron 1958; 2: 1
  • 9 Baxter EW, Mariano PS. Recent Advances in the Synthesis of Yohimbine Alkaloids. In Alkaloids: Chemical and Biological Perspectives. Pelletier SW. Springer; New York: 1992: 197-319
  • 10 Dewick PM. Alkaloids . In Medicinal Natural Products: A Biosynthetic Approach, 3rd ed. Wiley; Hoboken: 2009: 311-420
  • 11 Miettinen K, Dong L, Navrot N, Schneider T, Burlat V, Pollier J, Woittiez L, van der Krol S, Lugan R, Ilc T, Verpoorte R, Oksman-Caldentey K.-M, Martinoia E, Bouwmeester H, Goossens A, Memelink J, Werck-Reichhart D. Nat. Commun. 2014; 5: 3606
  • 12 Radwanski ER, Last RL. Plant Cell 1995; 7: 921
  • 13 Dewick PM. The Shikimate Pathway: Aromatic Amino Acids and Phenylpropanoids. In Medicinal Natural Products: A Biosynthetic Approach, 3rd ed. Wiley; Hoboken: 2009: 137-186
  • 14 Dewick PM. The Mevalonate and Methylerythritol Phosphate Pathways: Terpenoids and Steroids. In Medicinal Natural Products: A Biosynthetic Approach, 3rd ed. Wiley; Hoboken: 2009: 187-310
  • 15 Nomura T, Quesada AL, Kutchan TM. J. Biol. Chem. 2008; 283: 34650
  • 16 Stöckigt J, Zenk MH. FEBS Lett. 1977; 79: 233
  • 17 Rueffer M, Nagakura N, Zenk MH. Tetrahedron Lett. 1978; 1593
  • 18 Váradi A, Marrone GF, Palmer TC, Narayan A, Szabó MR, Le Rouzic V, Grinnell SG, Subrath JJ, Warner E, Kalra S, Hunkele A, Pagirsky J, Eans SO, Medina JM, Xu J, Pan Y.-X, Borics A, Pasternak GW, McLaughlin JP, Majumdar S. J. Med. Chem. 2016; 59: 8381
  • 19 Madariaga-Mazón A, Marmolejo-Valencia AF, Li Y, Toll L, Houghten RA, Martinez-Mayorga K. Drug Discov. Today 2017; 22: 1719
  • 20 Horie S, Yano S, Aimi N, Sakai S.-i, Watanabe K. Life Sci. 1992; 50: 491
  • 21 Jung HY, Nam KN, Woo B.-C, Kim K.-P, Kim S.-O, Lee EH. Mol. Med. Rep. 2013; 7: 154
  • 22 Doxey JC, Lane AC, Roach AG, Virdce NK. Naunyn-Schmiedeberg's Arch. Pharmacol. 1984; 325: 136
  • 23 Perry BD, U’Prichard DC. Eur. J. Pharmacol. 1981; 76: 461
  • 24 Hatch RC, Kitzman JV, Zahner JM, Clark JD. Am. J. Vet. Res. 1985; 46: 371
  • 25 Shore PA, Giachetti A. Reserpine: Basic and Clinical Pharmacology. In Handbook of Psychopharmacology, Volume 10: Neuroleptics and Schizophrenia. Iversen LL, Iversen SD, Snyder SH. Springer US; Boston: 1978: 197-219
  • 26 Elisabetsky E, Costa-Campos L. Evid.-Based Complement. Altern. Med. 2006; 3: 787923
  • 27 Linck VM, Bessa MM, Herrmann AP, Iwu MM, Okunji CO, Elisabetsky E. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2012; 36: 29
  • 28 Roquebert J, Demichel P. Eur. J. Pharmacol. 1984; 106: 203
  • 29 Chen F.-E, Huang J. Chem. Rev. 2005; 105: 4671
  • 30 Hirai Y, Terada T, Okaji Y, Yamazaki T, Momose T. Tetrahedron Lett. 1990; 31: 4755
  • 31 Stork G, Guthikonda RN. J. Am. Chem. Soc. 1972; 94: 5109
  • 32 Martin SF, Rueger H, Williamson SA, Grzejszczak S. J. Am. Chem. Soc. 1987; 109: 6124
  • 33 Stork G, Brizzolara A, Landesman H, Szmuszkovicz J, Terrell R. J. Am. Chem. Soc. 1963; 85: 207
  • 34 Mergott DJ, Zuend SJ, Jacobsen EN. Org. Lett. 2008; 10: 745
  • 35 Boeckman RK, Charette AB, Asberom T, Johnston BH. J. Am. Chem. Soc. 1987; 109: 7553
  • 36 Myers AG, Yang BH, Chen H, McKinstry L, Kopecky DJ, Gleason JL. J. Am. Chem. Soc. 1997; 119: 6496
  • 37 Becher J. Org. Synth. 1979; 59: 79
  • 38 Herlé B, Wanner MJ, van Maarseveen JH, Hiemstra H. J. Org. Chem. 2011; 76: 8907
  • 39 Sannigrahi M, Mayhew DL, Clive DL. J. J. Org. Chem. 1999; 64: 2776
  • 40 Wang X, Xia D, Qin W, Zhou R, Zhou X, Zhou Q, Liu W, Dai X, Wang H, Wang S, Tan L, Zhang D, Song H, Liu X.-Y, Qin Y. Chem 2017; 2: 803
  • 41 Erkkilä A, Majander I, Pihko PM. Chem. Rev. 2007; 107: 5416
  • 42 Isayama S, Mukaiyama T. Chem. Lett. 1989; 18: 1071
  • 43 Corey EJ, Chaykovsky M. J. Am. Chem. Soc. 1965; 87: 1353
  • 44 Feng W, Jiang D, Kee C.-W, Liu H, Tan C.-H. Chem. Asian J. 2016; 11: 390
  • 45 Liu H, Leow D, Huang K.-W, Tan C.-H. J. Am. Chem. Soc. 2009; 131: 7212
  • 46 Lautens M, Ma S, Chiu P. J. Am. Chem. Soc. 1997; 119: 6478
  • 47 Rajapaksa NS, McGowan MA, Rienzo M, Jacobsen EN. Org. Lett. 2013; 15: 706
  • 48 Lalonde MP, McGowan MA, Rajapaksa NS, Jacobsen EN. J. Am. Chem. Soc. 2013; 135: 1891
  • 49 Park J, Chen DY. K. Angew. Chem. Int. Ed. 2018; 57: 16152
  • 50 Uematsu N, Fujii A, Hashiguchi S, Ikariya T, Noyori R. J. Am. Chem. Soc. 1996; 118: 4916
  • 51 Riva R, Banfi L, Danieli B, Guanti G, Lesma G, Palmisano G. J. Chem. Soc., Chem. Commun. 1987; 299
  • 52 Miyafuji A, Ito K, Katsuki T. Heterocycles 2000; 52: 261
  • 53 Ghosh AK, Sarkar A. Eur. J. Org. Chem. 2016; 6001
  • 54 Xie C, Luo J, Zhang Y, Zhu L, Hong R. Org. Lett. 2017; 19: 3592
  • 55 Ando K. J. Org. Chem. 1997; 62: 1934
  • 56 Blanchette MA, Choy W, Davis JT, Essenfeld AP, Masamune S, Roush WR, Sakai T. Tetrahedron Lett. 1984; 25: 2183
  • 57 Scholl M, Ding S, Lee CW, Grubbs RH. Org. Lett. 1999; 1: 953
  • 58 Girvin ZC, Lampkin PP, Liu X, Gellman SH. Org. Lett. 2020; 22: 4568
  • 59 Miller ER, Hovey MT, Scheidt KA. J. Am. Chem. Soc. 2020; 142: 2187