Synthesis 2022; 54(06): 1613-1620
DOI: 10.1055/a-1693-7535
paper

Copper(II)-Catalyzed [3+2] Annulation of Thioamides with AIBN: Facile Access to Highly Functionalized Thiazolidin-4-ones

Pragya Pali
,
Dhananjay Yadav
,
Gaurav Shukla
,
Maya Shankar Singh
We gratefully acknowledge financial support in the form of fellowships (to P.P., D.Y. and G.S.) from the Science and Engineering Research Board (SERB), New Delhi (CRG/2019/000058) and the University Grants Commission (UGC), Institutes of Eminence (IoE) Incentive Grant (Scheme No. 6031). We are also grateful for funding from the Council of Scientific and Industrial Research, New Delhi [02(0348)/19/EMR-II] and for a JC Bose National Fellowship, New Delhi (JCB/2020/000023).


Abstract

An efficient and versatile copper-catalyzed intermolecular radical [3+2] annulation of thioamides with azobisisobutyronitrile (AIBN) is described. This two-component copper(II)-catalyzed transformation is achieved in one pot via cascade formation of C–S/C–N bonds through cyclization of an in situ generated N,S-acetal intermediate derived from a β-ketothioamide. This operationally simple method allows direct access to synthetically demanding thiazolidin-4-ones in good to excellent yields containing diverse functional groups of different electronic and steric nature. The readily available reaction partners, the avoidance of expensive/toxic reagents and a gram-scale synthesis are additional attributes of this strategy. AIBN plays a dual role as a radical initiator and an unusual source of a two-carbon coupling partner. Notably, the products possess Z stereochemistry with regard to the exo­cyclic C=C double bond at position 2 of the thiazolidine ring.

Supporting Information



Publikationsverlauf

Eingereicht: 28. Oktober 2021

Angenommen nach Revision: 10. November 2021

Accepted Manuscript online:
10. November 2021

Artikel online veröffentlicht:
06. Dezember 2021

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Brown FC. Chem. Rev. 1961; 61: 463
    • 1b Singh SP, Parmar SS, Raman K, Stenberg VI. Chem. Rev. 1981; 81: 175
    • 1c Gaumont A.-C, Gulea M, Levillain J. Chem. Rev. 2009; 109: 1371
    • 1d Jain AK, Vaidya A, Ravichandran V, Kashaw SK, Agrawal RK. Bioorg. Med. Chem. 2012; 20: 3378
    • 1e Cunico W, Gomes CR. B, Vellasco WT. Jr. Mini-Rev. Org. Chem. 2008; 5: 336
    • 1f Xu Z, Ye T. Thiazoline and Thiazole and Their Derivatives. In Heterocycles in Natural Product Synthesis. Majumdar KC, Chattopadhyay SK. Wiley-VCH; Weinheim: 2011: 459
    • 2a Udaykumar D, Bhoi A. J. Pharm. Res. 2011; 7: 2436
    • 2b Li YX, Zhai X, Liao WK, Zhu WF, He Y, Gong P. Chin. Chem. Lett. 2012; 23: 415
    • 2c Zhang X, Li X, Li D, Qu G, Wang J, Loiseau PM. Bioorg. Med. Chem. Lett. 2009; 19: 6280
    • 2d Mobinikhaledi A, Foroughifar N, Kalhor M, Mirabolfathy M. J. Heterocycl. Chem. 2010; 47: 77
    • 2e Mishchenko M, Shtrygol S, Kaminskyy D, Lesyk R. Sci. Pharm. 2020; 88: 16
    • 3a Diurno DM, Mazzoni O, Piscopo E, Calignano A, Giordano F, Bolognese A. J. Med. Chem. 1992; 35: 2910
    • 3b Mahmoodia NO, Zeydib MM, Biazarc E, Kazeminejad Z. Phosphorus, Sulfur Silicon Relat. Elem. 2017; 192: 344
    • 3c Zarghia A, Najafnia L, Daraee B, Dadrass OG, Hedayati M. Bioorg. Med. Chem. Lett. 2007; 17: 5634
    • 3d Rao A, Carbone A, Chimirri A, De Clercq E, Monforte AM, Monforte P, Pannecouque C, Zappala M. Farmaco 2002; 57: 747
    • 4a Oecal N, Aydogan F, Yolacan C, Turgut Z. J. Heterocycl. Chem. 2003; 40: 721
    • 4b Bolognese A, Correale G, Manfra M, Lavecchia A, Novellino E, Barone V. Org. Biomol. Chem. 2004; 2: 2809
    • 4c Lingampalle D, Jawale D, Waghmare R, Mane R. Synth. Commun. 2010; 40: 2397
    • 5a Chandrasekhar B. J. Sulfur Chem. 2008; 29: 187
    • 5b Gautam D, Gautam P, Chaudhary RP. Chin. Chem. Lett. 2012; 23: 1221
    • 5c Patil SG, Bagul RR, Swami MS, Kotharkar N, Darade K. Chin. Chem. Lett. 2011; 22: 883
    • 5d Gududuru V, Nguyen V, Dalton JT, Miller DD. Synlett 2004; 2357
    • 5e Pratap UR, Jawale DV, Bhosle MR, Mane RA. Tetrahedron Lett. 2011; 52: 1689
    • 6a Jagodziński TS, Wesołowska A, Sośnicki JG. Polish J. Chem. 2000; 74: 1101
    • 6b Verma GK, Shukla G, Nagaraju A, Srivastava A, Singh MS. Tetrahedron 2014; 70: 6980
    • 6c Verma GK, Shukla G, Nagaraju A, Srivastava A, Raghuvanshi K, Singh MS. RSC Adv. 2014; 4: 11640
    • 7a Prices for AIBN ($40 kg–1) are from https://www.energychemical.com/front/index.htm (accessed December, 2021)
    • 7b For detailed information on AIBN see: Simpkins N. S. Azobisisobutyronitrile . In e-EROS Encyclopedia of Reagents for Organic Synthesis . John Wiley & Sons; New York: 2001. DOI: 10.1002/047084289X.ra121
    • 7c Székely A, Klussmann M. Chem. Asian J. 2019; 14: 105
    • 7d Yang S, Yan B, Zhong L, Jia C, Yao D, Yang C, Sun K, Li G. Org. Chem. Front. 2020; 7: 2474
    • 7e Zhang X, Huang H. Org. Lett. 2018; 20: 4998
    • 8a Bentrude WG, Sopchik AE, Gajda T. J. Am. Chem. Soc. 1989; 111: 3981
    • 8b Fukuda O, Sakaguchi S, Ishii Y. Tetrahedron Lett. 2001; 42: 3479
    • 8c Aoki Y, Sakaguchi S, Ishii Y. Adv. Synth. Catal. 2004; 346: 199
    • 8d Aoki Y, Sakaguchi S, Ishii Y. Tetrahedron 2005; 61: 5219
    • 8e Aoki Y, Hirai N, Sakaguchi S, Ishii Y. Tetrahedron 2005; 61: 10995
    • 8f Nakamura R, Obora Y, Ishii Y. Chem. Commun. 2008; 29: 3417
    • 8g Kamae K, Obora Y, Ishii Y. Bull. Chem. Soc. Jpn. 2009; 82: 891
    • 8h Look JL, Wick DD, Mayer JM, Goldberg KI. Inorg. Chem. 2009; 48: 1356
    • 8i Boisvert L, Denney MC, Hanson SK, Goldberg KI. J. Am. Chem. Soc. 2009; 131: 15802
    • 8j Lloyd R, Jenkins RL, Piccinini M, He Q, Kiely CJ, Carley AF, Golunski SE, Bethell D, Bartley JK, Hutchings GJ. J. Catal. 2011; 283: 161
    • 9a Hook JP. V, Tobolsky AV. J. Am. Chem. Soc. 1958; 80: 779
    • 9b Gui Q.-W, Xiong Z.-Y, Teng F, Cai T.-C, Li Q, Hu W, Wang X, Yu J, Liu X. Org. Biomol. Chem. 2021; 19: 8254
    • 10a Jagodziński TS. Chem. Rev. 2003; 103: 197
    • 10b Wen L.-R, Men L.-B, He T, Ji G.-J, Li M. Chem. Eur. J. 2014; 20: 5028
    • 10c Luo X, Ge L.-S, An X.-L, Jin J.-H, Wang Y, Sun P.-P, Deng W.-P. J. Org. Chem. 2015; 80: 4611
    • 10d Li M, Kong X.-J, Wen L.-R. J. Org. Chem. 2015; 80: 11999
    • 10e Li C.-X, Liu R.-J, Yin K, Wen L.-R, Li M. Org. Biomol. Chem. 2017; 15: 5820
    • 10f Man N.-N, Wang J.-Q, Zhang L.-M, Wen L.-R, Li M. J. Org. Chem. 2017; 82: 5566
    • 10g Guo W.-S, Wen L.-R, Li M. Org. Biomol. Chem. 2015; 13: 1942
    • 10h Zeng X.-M, Meng C.-Y, Bao J.-X, Xu D.-C, Xie J.-W, Zhu W.-D. J. Org. Chem. 2015; 80: 11521
    • 11a Verma GK, Shukla G, Nagaraju A, Srivastava A, Singh MS. Tetrahedron Lett. 2014; 55: 5182
    • 11b Nandi GC, Singh MS. J. Org. Chem. 2016; 81: 5824
    • 11c Ansari MA, Yadav D, Soni S, Srivastava A, Singh MS. J. Org. Chem. 2019; 84: 5404
    • 11d Ansari MA, Yadav D, Soni S, Singh MS. Org. Biomol. Chem. 2019; 17: 9151
  • 12 Hickman AJ, Sanford MS. Nature 2012; 484: 177