Synthesis 2022; 54(07): 1684-1694
DOI: 10.1055/a-1696-6429
short review

Recent Progress in Chromium-Mediated Carbonyl Addition Reactions

Yuri Katayama
,
,
Motomu Kanai
This work was supported by JSPS KAKENHI Grant Numbers JP17H06441 and JP17H06442 (Hybrid Catalysis) (M.K.), JP20H05843 (Dynamic Exciton) and JP21K15220 (H.M.).


Abstract

Organochromium(III) species are versatile nucleophiles in complex molecule synthesis due to their high functional group tolerance and chemoselectivity for aldehydes. Traditionally, carbonyl addition reactions of organochromium(III) species were performed through reduction of organohalides either using stoichiometric chromium(II) salts or catalytic chromium salts in the presence of stoichiometric reductants [such as Mn(0)]. Recently, alternative methods emerged involving organoradical formation from readily available starting materials (e.g., N-hydroxyphthalimide esters, alkenes, and alkanes), followed by trapping the radical with stoichiometric or catalytic chromium(II) salts. Such methods, especially using catalytic chromium(II) salts, will lead to the development of sustainable chemical processes minimizing salt wastes and number of synthetic steps. In this review, methods for generation of organochromium(III) species for addition reactions to carbonyl compounds, classified by nucleophiles are described.

1 Introduction

2 Alkylation

2.1 Branch-Selective Reductive Alkylation of Aldehydes Using Unactivated Alkenes

2.2 Linear-Selective Alkylation of Aldehydes

2.2.1 Catalytic Decarboxylative Alkylation of Aldehydes Using NHPI ­Esters

2.2.2 Catalytic Reductive Alkylation of Aldehydes Using Unactivated Alkenes

2.2.3 Alkylation of Aldehydes via C(sp3)–H Bond Functionalization of Unactivated Alkanes

2.3 Catalytic α-Aminoalkylation of Carbonyl Compounds

3 Allylation

3.1 Catalytic Allylation of Aldehydes via Three-Component Coupling

3.2 Catalytic Allylation of Aldehydes via C(sp3)–H Bond Functionalization of Alkenes

4 Propargylation: Catalytic Propargylation of Aldehydes via Three-Component Coupling

5 Conclusion



Publikationsverlauf

Eingereicht: 26. Oktober 2021

Angenommen nach Revision: 15. November 2021

Publikationsdatum:
15. November 2021 (online)

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Organometallics in Synthesis: Third Manual. Schlosser M. Wiley; Hoboken: 2013
  • 2 Seyferth D. Organometallics 2009; 28: 1598
  • 3 Recent advances mainly by Knochel’s group have made chemoselective Grignard reaction possible. For a representative review, see: Knochel P, Dohle W, Gommermann N, Kneisel FF, Kopp F, Korn T, Sapountzis I, Vu VA. Angew. Chem. Int. Ed. 2003; 42: 4302
  • 4 Okude Y, Hirano S, Hiyama T, Nozaki H. J. Am. Chem. Soc. 1977; 99: 3179
    • 5a Hiyama T, Kimura K, Nozaki H. Tetrahedron Lett. 1981; 22: 1037
    • 5b Hiyama T, Okude Y, Kimura K, Nozaki H. Bull. Chem. Soc. Jpn. 1982; 55: 561
    • 5c Takai K, Kimura K, Kuroda T, Hiyama T, Nozaki H. Tetrahedron Lett. 1983; 24: 5281
    • 5d Takai K, Kuroda T, Nakatsukasa S, Oshima K, Nozaki H. Tetrahedron Lett. 1985; 26: 5585
    • 5e Takai K, Nitta K, Fujimura O, Utimoto K. J. Org. Chem. 1989; 54: 4732
    • 6a Jin H, Uenishi J, Christ WJ, Kishi Y. J. Am. Chem. Soc. 1986; 108: 5644
    • 6b Takai K, Tagashira M, Kuroda T, Oshima K, Utimoto K, Nozaki H. J. Am. Chem. Soc. 1986; 108: 6048

      For representative reviews on the addition of organochromium(III) reagents to carbonyl compounds, see:
    • 7a Fürstner A. Chem. Rev. 1999; 99: 991
    • 7b Wessjohann LA, Scheid G. Synthesis 1999; 1
    • 7c Takai K. Org. React. 2004; 64: 253

      For the first catalytic NHTK reaction, see:
    • 8a Fürstner A, Shi N. J. Am. Chem. Soc. 1996; 118: 2533
    • 8b Fürstner A, Shi N. J. Am. Chem. Soc. 1996; 118: 12349
  • 9 For the first catalytic asymmetric NHTK reaction, see: Bandini M, Cozzi PG, Melchiorre P, Umani-Ronchi A. Angew. Chem. Int. Ed. 1999; 38: 3357

    • For representative reviews on enantioselective NHTK reactions, see:
    • 10a Hargaden GC, Guiry PJ. Adv. Synth. Catal. 2007; 349: 2407
    • 10b Tian Q, Zhang G. Synthesis 2016; 48: 4038
  • 11 Aicher TD, Buszek KR, Fang FG, Forsyth CJ, Jung SH, Kishi Y, Matelich MC, Scola PM, Spero DM, Yoon SK. J. Am. Chem. Soc. 1992; 114: 3162
  • 12 For a representative review on applications of NHTK reactions to total synthesis, see: Gil A, Albericio F, Álvarez M. Chem. Rev. 2017; 117: 8420
  • 13 Oral-rat LD 50 for Cr2O3 >2700 mg/kg. Chromium(III) and its Inorganic Compounds, The MAK-Collection for Occupational Health and Safety, 2014; DOI: 10.1002/3527600418.mb1606583vee4614
  • 14 Castro CE, Kray WC. Jr. J. Am. Chem. Soc. 1963; 85: 2768
  • 15 Kochi JK, Powers JW. J. Am. Chem. Soc. 1970; 92: 137
  • 16 Eldik R, Gaede W, Cohen H, Meyerstein D. Inorg. Chem. 1992; 31: 3695
  • 17 Espenson JH. Acc. Chem. Res. 1992; 25: 222

    • For representative reviews on the recent advance in photoredox catalysis, see:
    • 18a Prier CK, Rankic DA, MacMillan DW. C. Chem. Rev. 2013; 113: 5322
    • 18b Romero NA, Nicewicz DA. Chem. Rev. 2016; 116: 10075
    • 18c Shaw MH, Twilton J, MacMillan DW. C. J. Org. Chem. 2016; 81: 6898

      For representative reviews on the radical polar crossover reactions, see:
    • 19a Pitzer L, Schwarz JL, Glorius F. Chem. Sci. 2019; 10: 8285
    • 19b Wiles RJ, Molander GA. Isr. J. Chem. 2020; 60: 281
    • 19c Sharma S, Singh J, Sharma A. Adv. Synth. Catal. 2021; 363: 3146
    • 19d Donabauer K, König B. Acc. Chem. Res. 2021; 54: 242
  • 20 Matos JL. M, Vásquez-Céspedes S, Gu J, Oguma T, Shenvi RA. J. Am. Chem. Soc. 2018; 140: 16976
  • 21 Shevick SL, Wilson CV, Kotesova S, Kim D, Holland PL, Shenvi RA. Chem. Sci. 2020; 11: 12401
  • 22 Espenson JH, Shveima JS. J. Am. Chem. Soc. 1973; 95: 4468
    • 23a Wessjohann LA, Schmidt G, Schrekker HS. Synlett 2007; 2139
    • 23b Wessjohann LA, Schmidt G, Schrekker HS. Tetrahedron 2008; 64: 2134
  • 24 Ni S, Padial NM, Kingston C, Vantourout JC, Schmitt DC, Edwards JT, Kruszyk MM, Merchant RR, Mykhailiuk PK, Sanchez BB, Yang S, Perry MA, Gallego GM, Mousseau JJ, Collins MR, Cherney RJ, Lebed PS, Chen JS, Qin T, Baran PS. J. Am. Chem. Soc. 2019; 141: 6726
    • 25a Okada K, Okamoto K, Oda M. J. Am. Chem. Soc. 1988; 110: 8736
    • 25b Okada K, Okamoto K, Morita N, Okubo K, Oda M. J. Am. Chem. Soc. 1991; 113: 9401
  • 26 Kingston C, Palkowitz MD, Takahira Y, Vantourout JC, Peters BK, Kawamata Y, Baran PS. Acc. Chem. Res. 2020; 53: 72
  • 27 Grigg R, Putnikovic B, Urch CJ. Tetrahedron Lett. 1997; 38: 6307
  • 28 Kuroboshi M, Tanaka M, Kishimoto S, Tanaka H, Torii S. Synlett 1999; 69
    • 29a Durandetti M, Périchon J, Nédélec J.-Y. Tetrahedron Lett. 1999; 40: 9009
    • 29b Durandetti M, Nédélec J.-Y, Périchon J. Org.Lett. 2001; 3: 2073
  • 30 Gao Y, Hill DE, Hao W, McNicholas BJ, Vantourout JC, Hadt RG, Reisman SE, Blackmond DG, Baran PS. J. Am. Chem. Soc. 2021; 143: 9478
  • 31 Hirao Y, Katayama Y, Mitsunuma H, Kanai M. Org. Lett. 2020; 22: 8584
  • 32 Gao Y, Yang C, Bai S, Liu X, Wu Q, Wang J, Jiang C, Qi X. Chem 2020; 6: 675
  • 33 Sommer H, Juliá-Hernández F, Martin R, Marek I. ACS Cent. Sci. 2018; 4: 153
  • 34 Yahata K, Sakurai S, Hori S, Yoshioka S, Kaneko Y, Hasegawa K, Akai S. Org. Lett. 2020; 22: 1199
  • 35 Ravelli D, Fagnoni M, Fukuyama T, Nishikawa T, Ryu I. ACS Catal. 2018; 8: 701
  • 36 Schwarz JL, Kleinmans R, Paulisch TO, Glorius F. J. Am. Chem. Soc. 2020; 142: 2168
  • 37 Nakajima K, Miyake Y, Nishibayashi Y. Acc. Chem. Res. 2016; 49: 1946
    • 38a Takai K, Matsukawa N, Takahashi A, Fujii T. Angew. Chem. Int. Ed. 1998; 37: 152
    • 38b Xiong Y, Zhang G. J. Am. Chem. Soc. 2018; 140: 2735
  • 39 Schwarz JL, Huang H.-M, Paulisch TO, Glorius F. ACS Catal. 2020; 10: 162
  • 40 Wang P.-Z, Chen J.-R, Xiao W.-J. Org. Biomol. Chem. 2019; 17: 6936
  • 41 Citterio A, Arnoldi A, Minisci F. J. Org. Chem. 1979; 44: 2674
  • 42 Zimmerman HE, Traxler MD. J. Am. Chem. Soc. 1957; 79: 1920
  • 43 Shaughnessy KH, Huang R. Synth. Commun. 2002; 32: 1923
  • 44 Lin S, Chen Y, Yan H, Liu Y, Sun Y, Hao E, Shi C, Zhang D, Zhu N, Shi L. Org. Lett. 2021; 23: 8077
  • 45 Jung J, Kim J, Park G, You Y, Cho E. Adv. Synth. Catal. 2016; 358: 74
  • 46 Crisenza GE. M, Mazzarella D, Melchiorre P. J. Am. Chem. Soc. 2020; 142: 5461

    • For representative reviews on the catalytic asymmetric carbonyl ene reactions, see:
    • 47a Mikami K, Shimizu M. Chem. Rev. 1992; 92: 1021
    • 47b Mikami K, Terada M, Narisawa S, Nakai T. Synlett 1992; 255
    • 47c Berrisford DJ, Bolm C. Angew. Chem., Int. Ed. Engl. 1995; 34: 1717
    • 47d Mikami K, Terada M. In Comprehensive Asymmetric Catalysis . Jacobsen EN, Pfaltz A, Yamamoto H. Springer; Berlin: 1999: 1143
    • 47e Dias LC. Curr. Org. Chem. 2000; 4: 305
    • 47f Mikami K, Nakai T. In Catalytic Asymmetric Synthesis . Ojima I. Wiley-VCH; Weinheim: 2000: 543
    • 47g Clarke ML, France MB. Tetrahedron 2008; 64: 9003
  • 48 Schwarz JL, Schäfers F, Tlahuext-Aca A, Lückemeier L, Glorius F. J. Am. Chem. Soc. 2018; 140: 12705
  • 49 Schäfers F, Quach L, Schwarz JL, Saladrigas M, Daniliuc CG, Glorius F. ACS Catal. 2020; 10: 11841
  • 50 Mitsunuma H, Tanabe S, Fuse H, Ohkubo K, Kanai M. Chem. Sci. 2019; 10: 3459
  • 51 Tanabe S, Mitsunuma H, Kanai M. J. Am. Chem. Soc. 2020; 142: 12374
    • 52a Kato S, Saga Y, Kojima M, Fuse H, Matsunaga S, Fukatsu A, Kondo M, Masaoka S, Kanai M. J. Am. Chem. Soc. 2017; 139: 2204
    • 52b Fuse H, Kojima M, Mitsunuma H, Kanai M. Org. Lett. 2018; 20: 2042
    • 52c Fuse H, Mitsunuma H, Kanai M. J. Am. Chem. Soc. 2020; 142: 4493
    • 52d Fuse H, Nakao H, Saga Y, Fukatsu A, Kondo M, Masaoka S, Mitsunuma H, Kanai M. Chem. Sci. 2020; 11: 12206
  • 53 Romero NA, Margrey KA, Tay NE, Nicewicz DA. Science 2015; 349: 1326
  • 54 Huang H.-M, Bellotti P, Daniliuc CG, Glorius F. Angew. Chem. Int. Ed. 2021; 60: 2464