Angewandte Nuklearmedizin 2022; 45(04): 319-324
DOI: 10.1055/a-1712-6265
Nuklearmedizinische Hirnbildgebung
Übersicht

PET und SPECT bei Epilepsie

PET and SPECT in Epilepsy
Christian la Fougère
1   Abteilung Nuklearmedizin und Klinische Molekulare Bildgebung, Universitäts-Klinikum Tübingen, Tübingen, Deutschland
,
Peter Bartenstein
2   Klinik und Poliklinik für Nuklearmedizin, Klinikum der Universität München, München, Deutschland
› Author Affiliations

Zusammenfassung

Molekulare Bildgebung mit SPECT und PET ermöglicht sowohl in der klinischen Routine als auch in der neurologischen Forschung eine metabolische Charakterisierung der Epilepsie, welche zum einem zu einer Verbesserung der diagnostischen Sicherheit und zum anderen zu einem besseren Verständnis über pathophysiologische und pathobiochemische Veränderungen führt. Im Rahmen dieser aktualisierten Arbeit soll der Einsatz von SPECT und PET dargestellt werden und deren Stellenwert im klinischen Einsatz neu bewertet werden.

Abstract

Molecular imaging with SPECT and PET in epilepsy is considered to increase diagnostic accuracy for clinical routine and to enable a metabolic characterization of this disease by the visualizing pathophysiological and pathobiochemical changes. The purpose of this updated review is to present the use of SPECT and PET and to re-evaluate their value in clinical use.



Publication History

Article published online:
02 December 2022

© 2022. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • Literatur

  • 1 Beghi E, Giussani G. Treatment of epilepsy in light of the most recent advances. Lancet Neurol 2019; 18: 7-8
  • 2 Engel Jr J. Introduction to temporal lobe epilepsy. Epilepsy Res 1996; 26: 141-50
  • 3 Cloppenborg T, May TW, Blümcke I. et al. Trends in epilepsy surgery: stable surgical numbers despite increasing presurgical volumes. Journal of Neurology, Neurosurgery & Psychiatry 2016; 87: 1322-1329
  • 4 West S, Nolan SJ, Cotton J. et al. Surgery for epilepsy. Cochrane Database Syst Rev 2015;
  • 5 Ilyas-Feldmann M, Vorderwulbecke B, Steinbrenner M. [Imaging in the presurgical evaluation of epilepsy] . Nervenarzt 2022; 93: 592-598
  • 6 Helmstaedter C. Neuropsychological aspects of epilepsy surgery. Epilepsy Behav 2004; 5 (Suppl. 01) S45-55
  • 7 Catafau AM. Brain SPECT in clinical practice. Part I: perfusion. J Nucl Med 2001; 42: 259-71
  • 8 Neirinckx RD, Canning LR, Piper IM. et al. Technetium-99m d,l-HM-PAO: a new radiopharmaceutical for SPECT imaging of regional cerebral blood perfusion. J Nucl Med 1987; 28: 191-202
  • 9 Nishizawa S, Tanada S, Yonekura Y. et al. Regional dynamics of N-isopropyl-(123I)p-iodoamphetamine in human brain. J Nucl Med 1989; 30: 150-6
  • 10 Lee DS, Lee SK, Kim YK. et al. Superiority of HMPAO ictal SPECT to ECD ictal SPECT in localizing the epileptogenic zone. Epilepsia 2002; 43: 263-9
  • 11 O’Brien TJ, Brinkmann BH, Mullan BP. et al. Comparative study of 99m99m. Journal of Neurology, Neurosurgery & Psychiatry 1999; 66: 331-339
  • 12 Leveille J, Demonceau G, Walovitch RC. Intrasubject comparison between technetium-99m-ECD and technetium-99m-HMPAO in healthy human subjects. J Nucl Med 1992; 33: 480-4
  • 13 Tsuchida T, Nishizawa S, Yonekura Y. et al. SPECT images of technetium-99m-ethyl cysteinate dimer in cerebrovascular diseases: comparison with other cerebral perfusion tracers and PET. J Nucl Med 1994; 35: 27-31
  • 14 van Dyck CH, Lin CH, Smith EO. et al. Comparison of technetium-99m-HMPAO and technetium-99m-ECD cerebral SPECT images in Alzheimer's disease. J Nucl Med 1996; 37: 1749-55
  • 15 Inoue K, Nakagawa M, Goto R. et al. Regional differences between 99mTc-ECD and 99mTc-HMPAO SPET in perfusion changes with age and gender in healthy adults. Eur J Nucl Med Mol Imaging 2003; 30: 1489-97
  • 16 Jaber M, Taherpour J, Voges B. et al. No Evidence to Favor 99mTc-HMPAO or 99mTc-ECD for Ictal Brain Perfusion SPECT for Identification of the Seizure Onset Zone. Clin Nucl Med 2021; 46: 890-895
  • 17 Spanaki MV, Spencer SS, Corsi M. et al. Sensitivity and specificity of quantitative difference SPECT analysis in seizure localization. J Nucl Med 1999; 40: 730-6
  • 18 Devous Sr MD, Thisted RA, Morgan GF. et al. SPECT brain imaging in epilepsy: a meta-analysis. J Nucl Med 1998; 39: 285-93
  • 19 Weil S, Noachtar S, Arnold S. et al. Ictal ECD-SPECT differentiates between temporal and extratemporal epilepsy: confirmation by excellent postoperative seizure control. Nucl Med Commun 2001; 22: 233-7
  • 20 Zaknun JJ, Bal C, Maes A. et al. Comparative analysis of MR imaging, Ictal SPECT and EEG in temporal lobe epilepsy: a prospective IAEA multi-center study. Eur J Nucl Med Mol Imaging 2008; 35: 107-15
  • 21 Lee JJ, Lee SK, Lee SY. et al. Frontal lobe epilepsy: clinical characteristics, surgical outcomes and diagnostic modalities. Seizure 2008; 17: 514-23
  • 22 Van Paesschen W, Dupont P, Sunaert S. et al. The use of SPECT and PET in routine clinical practice in epilepsy. Curr Opin Neurol 2007; 20: 194-202
  • 23 Van Paesschen W. Ictal SPECT. Epilepsia 2004; 45 (Suppl. 04) 35-40
  • 24 Newton MR, Berkovic SF, Austin MC. et al. Postictal switch in blood flow distribution and temporal lobe seizures. J Neurol Neurosurg Psychiatry 1992; 55: 891-4
  • 25 Ahnlide JA, Rosen I, Linden-Mickelsson Tech P. et al. Does SISCOM contribute to favorable seizure outcome after epilepsy surgery?. Epilepsia 2007; 48: 579-88
  • 26 Kaiboriboon K, Lowe VJ, Chantarujikapong SI. et al. The usefulness of subtraction ictal SPECT coregistered to MRI in single- and dual-headed SPECT cameras in partial epilepsy. Epilepsia 2002; 43: 408-14
  • 27 O'Brien TJ. SPECT: methodology. Adv Neurol 2000; 83: 11-32
  • 28 O'Brien TJ, So EL, Cascino GD. et al. Subtraction SPECT coregistered to MRI in focal malformations of cortical development: localization of the epileptogenic zone in epilepsy surgery candidates. Epilepsia 2004; 45: 367-76
  • 29 O'Brien TJ, So EL, Mullan BP. et al. Subtraction peri-ictal SPECT is predictive of extratemporal epilepsy surgery outcome. Neurology 2000; 55: 1668-77
  • 30 Wichert-Ana L, de Azevedo-Marques PM, Oliveira LF. et al. Interictal hyperemia correlates with epileptogenicity in polymicrogyric cortex. Epilepsy Res 2008; 79: 39-48
  • 31 Taherpour J, Jaber M, Voges B. et al. Predicting the outcome of epilepsy surgery by covariance pattern analysis of ictal perfusion SPECT. J Nucl Med 2022; 63: 925-930
  • 32 Duncan JS, Trimmel K. Advanced neuroimaging techniques in epilepsy. Curr Opin Neurol 2022; 35: 189-195
  • 33 Steinbrenner M, Duncan JS, Dickson J. et al. Utility of 18F-fluorodeoxyglucose positron emission tomography in presurgical evaluation of patients with epilepsy: A multicenter study. Epilepsia 2022; 63: 1238-1252
  • 34 Drzezga A, Arnold S, Minoshima S. et al. 18F-FDG PET studies in patients with extratemporal and temporal epilepsy: evaluation of an observer-independent analysis. J Nucl Med 1999; 40: 737-46
  • 35 Arnold S, Schlaug G, Niemann H. et al. Topography of interictal glucose hypometabolism in unilateral mesiotemporal epilepsy. Neurology 1996; 46: 1422-30
  • 36 Gambhir S, Singh Sethi R, Deswal S. Incidental detection of a single brain metastasis from breast carcinoma during Tc-99m MIBI scintimammography. Clin Nucl Med 2001; 26: 883-4
  • 37 Juhasz C, Chugani DC, Muzik O. et al. Relationship of flumazenil and glucose PET abnormalities to neocortical epilepsy surgery outcome. Neurology 2001; 56: 1650-8
  • 38 Ryvlin P, Bouvard S, Le Bars D. et al. Clinical utility of flumazenil-PET versus [18F]fluorodeoxyglucose-PET and MRI in refractory partial epilepsy. A prospective study in 100 patients. Brain 1998; 121 ( Pt 11): 2067-81
  • 39 Won HJ, Chang KH, Cheon JE. et al. Comparison of MR imaging with PET and ictal SPECT in 118 patients with intractable epilepsy. AJNR Am J Neuroradiol 1999; 20: 593-9
  • 40 la Fougere C, Rominger A, Forster S. et al. PET and SPECT in epilepsy: a critical review. Epilepsy & behavior : E&B 2009; 15: 50-5
  • 41 Donaire A, Capdevila A, Carreño M. et al. Identifying the cortical substrates of interictal epileptiform activity in patients with extratemporal epilepsy: An EEG-fMRI sequential analysis and FDG-PET study. Epilepsia 2013; 54: 678-690
  • 42 Barrington SF, Koutroumanidis M, Agathonikou A. et al. Clinical value of "ictal" FDG-positron emission tomography and the routine use of simultaneous scalp EEG studies in patients with intractable partial epilepsies. Epilepsia 1998; 39: 753-66
  • 43 Savic I, Persson A, Roland P. et al. In-vivo demonstration of reduced benzodiazepine receptor binding in human epileptic foci. Lancet 1988; 2: 863-6
  • 44 Muzik O, da Silva EA, Juhasz C. et al. Intracranial EEG versus flumazenil and glucose PET in children with extratemporal lobe epilepsy. Neurology 2000; 54: 171-9
  • 45 Merlet I, Ryvlin P, Costes N. et al. Statistical parametric mapping of 5-HT1A receptor binding in temporal lobe epilepsy with hippocampal ictal onset on intracranial EEG. Neuroimage 2004; 22: 886-96
  • 46 Finnema SJ, Toyonaga T, Detyniecki K. et al. Reduced synaptic vesicle protein 2A binding in temporal lobe epilepsy: A [(11) C]UCB-J positron emission tomography study. Epilepsia 2020; 61: 2183-2193
  • 47 Bouilleret V, Dedeurwaerdere S. What value can TSPO PET bring for epilepsy treatment?. Eur J Nucl Med Mol Imaging 2021; 49: 221-233
  • 48 Gershen LD, Zanotti-Fregonara P, Dustin IH. et al. Neuroinflammation in Temporal Lobe Epilepsy Measured Using Positron Emission Tomographic Imaging of Translocator Protein. JAMA Neurol 2015; 72: 882-8
  • 49 Mahler C, Schumacher AM, Unterrainer M. et al. TSPO PET imaging of natalizumab-associated progressive multifocal leukoencephalopathy. Brain 2021; 144: 2683-2695
  • 50 Unterrainer M, Fleischmann DF, Vettermann F. et al. TSPO PET, tumour grading and molecular genetics in histologically verified glioma: a correlative (18)F-GE-180 PET study. Eur J Nucl Med Mol Imaging 2020; 47: 1368-1380
  • 51 Miyazaki T, Nakajima W, Hatano M. et al. Visualization of AMPA receptors in living human brain with positron emission tomography. Nat Med 2020; 26: 281-288
  • 52 Guo K, Cui B, Shang K. et al. Assessment of localization accuracy and postsurgical prediction of simultaneous (18)F-FDG PET/MRI in refractory epilepsy patients. Eur Radiol 2021; 31: 6974-6982
  • 53 Kikuchi K, Togao O, Yamashita K. et al. Diagnostic accuracy for the epileptogenic zone detection in focal epilepsy could be higher in FDG-PET/MRI than in FDG-PET/CT. Eur Radiol 2021; 31: 2915-2922
  • 54 Zhang M, Huang H, Liu W. et al. Combined quantitative T2 mapping and [(18)F]FDG PET could improve lateralization of mesial temporal lobe epilepsy. Eur Radiol 2022; 32: 6108-6117
  • 55 Guo K, Wang J, Cui B. et al. [(18)F]FDG PET/MRI and magnetoencephalography may improve presurgical localization of temporal lobe epilepsy. Eur Radiol 2022; 32: 3024-3034
  • 56 Wang J, Guo K, Cui B. et al. Individual [(18)F]FDG PET and functional MRI based on simultaneous PET/MRI may predict seizure recurrence after temporal lobe epilepsy surgery. Eur Radiol 2022; 32: 3880-3888
  • 57 la Fougère C, Bartenstein P. PET und SPECT bei Epilepsie. Der Nuklearmediziner 2016; 39: 316-321