neuroreha 2022; 14(01): 20-26
DOI: 10.1055/a-1729-3397
Schwerpunkt

Exoskelette und Gehtraining

Jan Mehrholz
,
Bernhard Elsner

Moderne Technologien inkl. neuer mobiler Exoskelette nehmen mehr und mehr zu und werden weiterentwickelt. Noch ist die Evidenz nicht ausreichend, um Therapieempfehlungen für bestimmte Patientengruppen geben zu können, doch es werden zunehmend Studien zu mobilen Geräten durchgeführt. Wie ist der aktuelle Wissensstand?



Publikationsverlauf

Artikel online veröffentlicht:
14. März 2022

© 2022. Thieme. All rights reserved.

© Georg Thieme Verlag KG
Stuttgart · New York

 
  • Literatur

  • 1 French B, Thomas LH, Leathley MJ. et al. Repetitive task training for improving functional ability after stroke. Cochrane Database Syst Rev 2007; CD006073
  • 2 Veerbeek JM, van Wegen E, van Peppen R. et al. What is the evidence for physical therapy poststroke? A systematic review and meta-analysis. PLoS One 2014; 9: e87987
  • 3 Dohle C, Tholen R, Wittenberg H. et al. S2e-Leitlinie: Rehabilitation der Mobilität nach Schlaganfall (ReMoS). Neurol Rehabil 2015; 21: 355-494
  • 4 Mehrholz J, Thomas S, Kugler J. et al. Electromechanical-assisted training for walking after stroke. Cochrane Database Syst Rev 2020; 10: CD006185 DOI: 10.1002/14651858.CD006185.pub5.
  • 5 Hesse S, Mehrholz J, Werner C. Roboter- und gerätegestützte Rehabilitation nach Schlaganfall: Gehen und Arm-/Handfunktion. Deutsches Ärzteblatt 2008; 105: 330-336
  • 6 Colombo G, Joerg M, Schreier R. et al. Treadmill training of paraplegic patients using a robotic orthosis. J Rehabil Res Dev 2000; 37: 693-700
  • 7 Mehrholz J, Pohl M. Electromechanical-assisted gait training after stroke. A systematic review comparing endeffector and exoskeleton devices. J Rehabil Med 2012; 44: 193-199
  • 8 Mehrholz J, Kugler J, Elsner B. Systematische Übersichtsarbeit mit Netzwerkmetaanalyse zu randomisierten und kontrollierten Studien zur Verbesserung der Gehfähigkeit nach Schlaganfall. Deutsches Ärzteblatt. 2018 [eingereicht]
  • 9 Werner C, Von Frankenberg S, Treig T. et al. Treadmill training with partial body weight support and an electromechanical gait trainer for restoration of gait in subacute stroke patients: A randomized crossover study. Stroke 2002; 33: 2895-2901
  • 10 Mehrholz J, Pohl M, Kugler J. et al. Electromechanical-assisted training for walking after stroke. Stroke 2021; 52: e153-e154 DOI: 10.1161/STROKEAHA.120.033755.
  • 11 Mehrholz J, Thomas S, Pohl M. et al. Electromechanical-assisted training for walking after stroke: An updated review. Stroke 2017; 48: e188-e189
  • 12 Mehrholz J, Thomas S, Elsner B. Treadmill training and body weight support for walking after stroke. Cochrane Database Systematic Reviews 2017; CD002840 DOI: 10.1002/14651858.CD002840.pub4.
  • 13 Mehrholz J, Pohl M, Kugler J. et al. Verbesserung der Gehfähigkeit nach Schlaganfall. Dtsch Arztebl International 2018; 115: 639-645 DOI: 10.3238/arztebl.2018.0639.
  • 14 Hornby TG, Henderson CE, Plawecki A. et al. Contributions of stepping intensity and variability to mobility in individuals poststroke. Stroke 2019; 50: 2492-2499 DOI: 10.1161/STROKEAHA.119.026254.
  • 15 Nave AH, Rackoll T, Grittner U. et al. Physical fitness training in patients with subacute stroke (PHYS-STROKE): Multicentre, randomised controlled, endpoint blinded trial. BMJ 2019; 366: l5101 DOI: 10.1136/bmj.l5101.
  • 16 Fritz H, Patzer D, Galen SS. Robotic exoskeletons for reengaging in everyday activities: Promises, pitfalls, and opportunities. Disabil Rehabil 2019; 41: 560-563 DOI: 10.1080/09638288.2017.1398786.
  • 17 Dijkers MP, Akers KG, Dieffenbach S. et al. Systematic reviews of clinical benefits of exoskeleton use for gait and mobility in neurologic disorders: A tertiary study. Arch Phys Med Rehabil 2021; 102: 300-313 DOI: 10.1016/j.apmr.2019.01.025.
  • 18 Tefertiller C, Hays K, Jones J. et al. Initial outcomes from a multicenter study utilizing the indego powered exoskeleton in spinal cord injury. Top Spinal Cord Inj Rehabil 2018; 24: 78-85 DOI: 10.1310/sci17-00014.
  • 19 Awad LN, Esquenazi A, Francisco GE. et al. The ReWalk ReStore soft robotic exosuit: A multi-site clinical trial of the safety, reliability, and feasibility of exosuit-augmented post-stroke gait rehabilitation. J Neuroeng Rehabil 2020; 17: 80 DOI: 10.1186/s12984-020-00702-5.
  • 20 Wall A, Borg J, Vreede K. et al. A randomized controlled study incorporating an electromechanical gait machine, the Hybrid Assistive Limb, in gait training of patients with severe limitations in walking in the subacute phase after stroke. PLoS One 2020; 15: e0229707 DOI: 10.1371/journal.pone.0229707.
  • 21 Palmcrantz S, Wall A, Vreede KS. et al. Impact of intensive gait training with and without electromechanical assistance in the chronic phase after stroke: A multi-arm randomized controlled trial with a 6 and 12 months follow-up. Front Neurosci 2021; 15: 660726 DOI: 10.3389/fnins.2021.660726.
  • 22 Calabro RS, Naro A, Russo M. et al. Shaping neuroplasticity by using powered exoskeletons in patients with stroke: A randomized clinical trial. J Neuroeng Rehabil 2018; 15: 35 DOI: 10.1186/s12984-018-0377-8.
  • 23 Yeung LF, Lau CCY, Lai CWK. et al. Effects of wearable ankle robotics for stair and over-ground training on sub-acute stroke: A randomized controlled trial. J Neuroeng Rehabil 2021; 18: 19 DOI: 10.1186/s12984-021-00814-6.
  • 24 Kerdraon J, Previnaire JG, Tucker M. et al. Evaluation of safety and performance of the self balancing walking system Atalante in patients with complete motor spinal cord injury. Spinal Cord Ser Cases 2021; 7: 71 DOI: 10.1038/s41394-021-00432-3.
  • 25 Louie DR, Eng JJ. Powered robotic exoskeletons in post-stroke rehabilitation of gait: A scoping review. J Neuroeng Rehabil 2016; 13: 53 DOI: 10.1186/s12984-016-0162-5.
  • 26 Louie DR, Mortenson WB, Durocher M. et al. Efficacy of an exoskeleton-based physical therapy program for non-ambulatory patients during subacute stroke rehabilitation: A randomized controlled trial. J Neuroeng Rehabil 2021; 18: 149 DOI: 10.1186/s12984-021-00942-z.
  • 27 Bunge LR, Davidson AJ, Helmore BR. et al. Effectiveness of powered exoskeleton use on gait in individuals with cerebral palsy: A systematic review. PLoS One 2021; 16: e0252193 DOI: 10.1371/journal.pone.0252193.
  • 28 Miller LE, Zimmermann AK, Herbert WG. Clinical effectiveness and safety of powered exoskeleton-assisted walking in patients with spinal cord injury: Systematic review with meta-analysis. Med Devices (Auckl) 2016; 9: 455-466 DOI: 10.2147/MDER.S103102.
  • 29 Tan K, Koyama S, Sakurai H. et al. Wearable robotic exoskeleton for gait reconstruction in patients with spinal cord injury: A literature review. J Orthop Translat 2021; 28: 55-64 DOI: 10.1016/j.jot.2021.01.001.
  • 30 Rodriguez-Fernandez A, Lobo-Prat J, Font-Llagunes JM. Systematic review on wearable lower-limb exoskeletons for gait training in neuromuscular impairments. J Neuroeng Rehabil 2021; 18: 22 DOI: 10.1186/s12984-021-00815-5.