CC BY-NC-ND 4.0 · SynOpen 2022; 06(01): 31-57
DOI: 10.1055/a-1743-4534
review

Synthesis and Applications of Asymmetric Catalysis Using Chiral Ligands Containing Quinoline Motifs

a   Department of Chemistry, National Institute of Technology Puducherry, Karaikal, 609609, Union Territory Puducherry, India
,
Rambabu Dandela
b   Department of Industrial and Engineering Chemistry, Institute of Chemical Technology, Indian oil Odisha Campus, Kharagpur extension Centre, Mouza, Samantpuri, Bhubaneswar-751013, Odisha, India
,
K. Bavya Devi
c   Department of Chemistry, Thassim Beevi Adbul Kader College for Women, Kilakarai, Ramanathapuram, Tamilnadu, India
,
Ragupathy Dhanusuraman
a   Department of Chemistry, National Institute of Technology Puducherry, Karaikal, 609609, Union Territory Puducherry, India
› Author Affiliations
The authors would like to thank the Department of Science and Technology, India (DST-Ref.No.: SB/FT/CS-117/2014), the Science and Engineering Research Board (SERB-Ref.No.: EEQ/2018/000574)-Ramanujan Fellowship, and the National Institute of Technology Puducherry, Karaikal, India for providing financial support. This research was supported by the SERB-DST Grant No. RJF/2020/000038. V.D. gratefully acknowledges the Ramanujan Fellowship. The author RD acknowledge ICT-IOC, Bhubaneswar for providing necessary support. Rambabu Dandela thanks DST-SERB for Ramanujan fellowship (SB/S2/RJN-075/2016), Core research grant (CRG/2018/000782) and ICT-IOC start-up grant. K.B.D. would like to acknowledge the support from the Management, Principal-Dr. S. Sumaya and the Director-Research & Industry-Institute Relations-Dr. M.S. Irfan Ahmed, Thassim Beevi Abdul Kader College for Women, Kilakarai, Ramanathapuram, Tamil Nadu, India.


Dedicated to Professor Benjamin List

Abstract

In the past decade, asymmetric synthesis of chiral ligands containing quinoline motifs, a family of natural products displaying a broad range of structural diversity and their metal complexes, have become the most significant methodology for the generation of enantiomerically pure compounds of biological and pharmaceutical interest. This review provides comprehensive insight on the plethora of nitrogen-based chiral ligands containing quinoline motifs and organocatalysts used in asymmetric synthesis. However, it is confined to the synthesis of quinoline-based chiral ligands and metal complexes, and their applications in asymmetric synthesis as homogeneous and heterogeneous catalysts.

1 Introduction

2 Synthesis of Chiral Ligands Containing Quinoline Motifs

2.1 Synthesis of Schiff Base Type Chiral Ligands

2.2 Synthesis of Oxazolinyl-Type Chiral Ligands

2.3 Synthesis of Chiral N,N-Type Ligands

2.4 Synthesis of Amine-Based Chiral Ligands

2.5 Synthesis of P,N-Type Chiral Ligands

2.6 Synthesis of Chiral N-Oxide and Nitrogen Ligands

3 Homogeneous Catalytic Asymmetric Reactions

3.1 Asymmetric Carbon–Carbon Bond Formation Reactions

3.2 Asymmetric Allylic Reactions

3.3 Asymmetric Cycloadditions

3.4 Asymmetric Carbene Insertions

3.5 Asymmetric Pinacol Couplings

3.6 Asymmetric Pudovik Reactions

3.7 Asymmetric Strecker Reactions

4 Heterogeneous Catalytic Asymmetric Reactions

4.1 Asymmetric Cyclopropanation of Olefins

4.2 Asymmetric Heck Reactions

4.3 Asymmetric Hydrogenations

4.4 Asymmetric Hydroformylation of Styrene

4.5 Asymmetric Dialkoxylation of 2-Propenylphenols

4.6 Asymmetric Cascade Cyclizations

4.7 Asymmetric Allylic Alkylations

4.8 Asymmetric Alkylation of β-Keto Esters

4.9 Asymmetric C–H Bond Arylation Reactions

4.10 Intramolecular Aerobic Oxidative Amination of Alkenes

4.11 Asymmetric Oxidative Hydroboration of Alkenes

5 Conclusions



Publication History

Received: 15 November 2021

Accepted after revision: 12 January 2022

Accepted Manuscript online:
18 January 2022

Article published online:
08 February 2022

© 2022. This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial-License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Collin G, Höke H. Ullmann’s Encyclopedia of Industrial Chemistry 2012; 31: 1
  • 2 Mehdi F.-M. Mini-Rev. Org. Chem. 2017; 14: 187
  • 3 Bose DS, Idrees M, Jakka NM, Rao JV. J. Comb. Chem. 2010; 12: 100
  • 4 Marco-Contelles J, Pérez-Mayoral E, Samadi A, Carreiras M. dC, Soriano E. Chem. Rev. 2009; 109: 2652
  • 5 Bharate JB, Bharate SB, Vishwakarma RA. ACS Comb. Sci. 2014; 16: 624
  • 6 Mastalir M, Glatz M, Pittenauer E, Allmaier G, Kirchner K. J. Am. Chem. Soc. 2016; 138: 15543
  • 7 Beesu M, Mehta G. J. Org. Chem. 2019; 84: 8731
  • 8 Willumstad TP, Boudreau PD, Danheiser RL. J. Org. Chem. 2015; 80: 11794
  • 9 Weyesa A, Mulugeta E. RSC Adv. 2020; 10: 20784
  • 10 Marella A, Tanwar OP, Saha R, Ali MR, Srivastava S, Akhter M, Shaquiquzzaman M, Alam MM. Saudi Pharm. J. 2013; 21: 1
  • 11 Meyet CE, Larsen CH. J. Org. Chem. 2014; 79: 9835
  • 12 Cretton S, Breant L, Pourrez L, Ambuehl C, Marcourt L, Ebrahimi SN, Hamburger M, Perozzo R, Karimou S, Kaiser M, Cuendet M, Christen P. J. Nat. Prod. 2014; 77: 2304
  • 13 Boyd DR, Sharma ND, Loke PL, Malone JF, McRoberts WC, Hamilton JT. Org. Biomol. Chem. 2007; 5: 2983
  • 14 Campbell SF, Hardstone JD, Palmer MJ. J. Med. Chem. 1988; 31: 1031
  • 15 Markees DG, Dewey VC, Kidder GW. J. Med. Chem. 1970; 13: 324
  • 16 Mabire D, Coupa S, Adelinet C, Poncelet A, Simonnet Y, Venet M, Wouters R, Lesage AS. J, Beijsterveldt LV, Bischoff F. J. Med. Chem. 2005; 48: 2134
  • 17 Guandalini L, Norcini M, Varani K, Pistolozzi M, Gotti C, Bazzicalupi C, Martini E, Dei S, Manetti D, Scapecchi S, Teodori E, Bertucci C, Ghelardini C, Romanelli MN. J. Med. Chem. 2007; 50: 4993
  • 18 Cui JJ, Shen H, Tran-Dubé M, Nambu M, McTigue M, Grodsky N, Ryan K, Yamazaki S, Aguirre S, Parker M, Li Q, Zou H, Christensen J. J. Med. Chem. 2013; 56: 6651
  • 19 León B, Fong JC. N, Peach KC, Wong WR, Yildiz FH, Linington RG. Org. Lett. 2013; 15: 1234
  • 20 Michael JP. Nat. Prod. Rep. 2003; 20: 476
  • 21 Zhang X, Jenekhe SA. Macromolecules 2000; 33: 2069
  • 22 Jenekhe SA, Lu L, Alam MM. Macromolecules 2001; 34: 7315
  • 23 Zhang Z, Shi Y, Pan Y, Cheng X, Zhang L, Chen J, Li M.-J, Yi C. J. Mater. Chem. B 2014; 2: 5020
  • 24 Pimpalshende DM, Dhoble SJ. Luminescence 2014; 29: 451
  • 25 Biot C, Daher W, Chavain N, Fandeur T, Khalife J, Dive D, De Clercq E. J. Med. Chem. 2006; 49: 2845
  • 26 Manohar S, Rajesh UC, Khan SI, Tekwani BL, Rawat DS. ACS Med. Chem. Lett. 2012; 3: 555
  • 27 Ben-Zvi I, Kivity S, Langevitz P, Shoenfeld Y. Clinic. Rev. Allerg. Immunol. 2012; 42: 145
  • 28 Kumar S, Bawa S, Gupta H. Mini-Rev. Med. Chem. 2009; 9: 1648
  • 29 Muruganantham N, Sivakumar R, Anbalagan N, Gunasekaran V, Leonard JT. Biol. Pharm. Bull. 2004; 27: 1683
  • 30 Luchi RJ, Conn HL, Helwig J. Am. J. Cardiol. 1962; 10: 252
  • 31 Nevin RL. Int. J. Parasitol. Drug. 2014; 4: 118
  • 32 Dhayalan V, Gadekar SC, Alassad Z, Milo A. Nat. Chem. 2019; 11: 543
  • 33 Raed AA, Dhayalan V, Barkai S, Milo A. Chimia 2020; 74: 878
  • 34 Dhayalan V, Mal K, Milo A. Synthesis 2019; 51: 2845
  • 35 Wang D, Weinstein AB, White PB, Stahl SS. Chem. Rev. 2018; 118: 2636
  • 36 Flanigan DM, Romanov-Michailidis F, White NA, Rovis T. Chem. Rev. 2015; 115: 9307
  • 37 Kurono N, Ohkuma T. ACS Catal. 2016; 6: 989
  • 38 Tanriver G, Dedeoglu B, Catak S, Aviyente V. Acc. Chem. Res. 2016; 49: 1250
  • 39 Chen D.-F, Han Z.-Y, Zhou X.-L, Gong L.-Z. Acc. Chem. Res. 2014; 47: 2365
    • 40a Carroll M, Guiry PJ. Chem. Soc. Rev. 2014; 43: 819
    • 40b Rokade BV, Barker J, Guiry PJ. Chem. Soc. Rev. 2019; 48: 4766
    • 41a Rokade B, Guiry PJ. ACS Catal. 2018; 8: 624
    • 41b Connon R, Roche B, Rokade BJ, Guiry PJ. Chem. Rev. 2021; 121: 6373
    • 41c List B. Chem. Rev. 2007; 107: 5413
    • 41d Xie Y, List B. Angew. Chem. Int. Ed. 2017; 56: 4936
    • 41e Liu C, Oblak EZ, Vander Wal MN, Dilger AK, Almstead DK, MacMillan DW. C. J. Am. Chem. Soc. 2016; 138: 2134
    • 41f Singh GS, Yeboah EM. O. Rep. Org. Chem. 2016; 6: 47
  • 42 Shen Z.-L, Dhayalan V, Benischke AD, Greiner R, Karaghiosoff K, Mayer P, Knochel P. Angew. Chem. Int. Ed. 2016; 55: 5332
  • 43 Li J, Tan E, Keller N, Chen Y.-H, Zehetmaier PM, Jakowetz AC, Bein T, Knochel P. J. Am. Chem. Soc. 2019; 141: 98
  • 44 Chen Q, du Jourdin XM, Knochel P. J. Am. Chem. Soc. 2013; 135: 4958
  • 45 Steib AK, Fernandez S, Kuzmina OM, Corpet M, Gosmini C, Knochel P. Synlett 2015; 26: 1049
  • 46 Kuzmina OM, Steib AK, Moyeux A, Cahiez G, Knochel P. Synthesis 2015; 47: 1696
  • 47 Bellan AB, Kuzmina OM, Vetsova VA, Knochel P. Synthesis 2017; 49: 188
  • 48 Balkenhohl M, Valsamidou V, Knochel P. Eur. J. Org. Chem. 2019; 5165
  • 49 See ref. 41a.
  • 50 Cao Y, Zhang S, Antilla JC. ACS Catal. 2020; 10: 10914
  • 51 Mihorianu M, Leonzio M, Monari M, Ravotto L, Ceroni P, Bettinelli M, Piccinelli F. ChemistrySelect 2016; 1: 1996
  • 52 Shao Y.-D, Dong M.-M, Wang Y.-A, Cheng P.-M, Wang T, Cheng D.-J. Org. Lett. 2019; 21: 4831
  • 53 Batista VF, Pinto DC. G. A, Silva AM. S. ACS Sustainable Chem. Eng. 2016; 4: 4064
  • 54 Wang Q, Zhang W.-W, Song H, Wang J, Zheng C, Gu Q, You S.-L. J. Am. Chem. Soc. 2020; 142: 15678
  • 55 Fernandes A, Laye C, Pramanik S, Palmeira D, Pekel Ö. Ö, Massip S, Schmidtmann M, Müller T, Robert F, Landais Y. J. Am. Chem. Soc. 2020; 142: 564
  • 56 Ingalls EL, Holtzen GA, Kaminsky W, Michael FE. J. Organomet. Chem. 2017; 832: 9
  • 57 Wang J, Chen MW, Ji Y, Hu SB, Zhou YG. J. Am. Chem. Soc. 2016; 138: 10413
  • 58 Parvez MM, Haraguchi N, Itsuno S. Macromolecules 2014; 47: 1922
  • 59 Tong M, Wang S, Zhuang J, Qin C, Li H, Wang W. Org. Lett. 2018; 20: 1195
  • 60 Shao Y, Han D, Dong M.-M, Yang X, Cheng D.-J. Org. Chem. Front. 2021; 8: 605
  • 61 Zheng L, Zhan Y, Yu C, Huang F, Wang Y, Jiang H. Org. Lett. 2017; 19: 1482
  • 62 Wang S.-J, Wang Z, Tang Y, Chen J, Zhou L. Org. Lett. 2020; 22: 8894
  • 63 Chen J, Fu Y, Yu Y, Wang J.-R, Guo Y.-W, Li H, Wang W. Org. Lett. 2020; 22: 6061
  • 64 Friestad GK, Ji A, Baltrusaitis J, Korapala CS, Qin J. J. Org. Chem. 2012; 77: 3159
  • 65 Thaler T, Geittner F, Knochel P. Synlett 2007; 2655
  • 66 Felluga F, Baratta W, Fanfoni L, Pitacco G, Rigo P, Benedetti F. J. Org. Chem. 2009; 74: 3547
  • 67 Hu X, Dawson SJ, Nagaoka Y, Tanatani A, Huc I. J. Org. Chem. 2016; 81: 1137
    • 68a Kawamura K, Fukuzawa H, Hayashi M. Org. Lett. 2008; 10: 3509
    • 68b Kawamura K, Fukuzawa H, Hayashi M. Bull. Chem. Soc. Jpn. 2011; 84: 640
    • 69a Ramesh N, Prakash C, Sureshbabu R, Dhayalan V, Mohanakrishnan AK. Tetrahedron 2008; 64: 2071
    • 69b Tan Q, Hayashi M. Adv. Synth. Catal. 2008; 350: 2639
    • 69c Dhayalan V, Murakami R, Hayashi M. Asian J. Chem. 2013; 25: 7505
    • 69d Hayashi M, Yamada K, Nakayama S, Hayashi H, Yamazaki S. Green Chem. 2000; 6: 257
    • 69e Sano Y, Tanaka T, Hayashi M. Chem. Lett. 2007; 12: 1414
    • 70a Suga H, Kakehi A, Mitsuda M. Bull. Chem. Soc. Jpn. 2004; 77: 561
    • 70b Suga H, Nakajima T, Itoh K, Kakehi A. Org. Lett. 2005; 7: 1431
    • 70c Shi JW, Zhao MX, Lei ZY, Shi M. J. Org. Chem. 2008; 73: 305
    • 70d Suga H, Funyu A, Kakehi A. Org. Lett. 2007; 11: 97
  • 71 Retmane A, Gmouh S, Runghen M, Valnot JY, Maddaluno J, Toupet L, Oulyadi H, Eddine JJ. Tetrahedron: Asymmetry 2008; 19: 1523
    • 72a Chelucci G, Pinna GA, Saba A, Valenti R. Tetrahedron: Asymmetry 2000; 11: 4027
    • 72b Chelucci G, Gladiali S, Saba A. Tetrahedron: Asymmetry 1999; 10: 1393
    • 72c He W, Yip KT, Zhu NY, Yang D. Org. Lett. 2009; 11: 5626
  • 73 Fraile JM, García JI, Osés GJ, Mayoral JA, Roldán M. Organometallics 2008; 27: 2246
  • 74 Canal JM, Gómez M, Jiménez F, Rocamora M, Muller G, Duńach E, Franco D, Jiménez A, Cano FH. Organometallics 2000; 19: 966
    • 75a Park SW, Son JH, Kim SG, Ahn KH. Tetrahedron: Asymmetry 1999; 10: 1903
    • 75b Chelucci G, Orrù G, Pinna GA. Tetrahedron 2003; 59: 9471
    • 75c Clark CR, Hay RW. J. Chem. Soc., Dalton Trans. 1974; 2148
  • 76 Bolm C, Verrucci M, Simic O, Cozzi PG, Raabe G, Okamura H. Chem. Commun. 2003; 2826
    • 77a Chelucci G, Saba A, Sanna G, Soccolini F. Tetrahedron: Asymmetry 2000; 11: 3427
    • 77b Chelucci G, Saba A. Tetrahedron: Asymmetry 1998; 9: 2575
    • 78a Takenaka N, Xia G, Yamamoto H. J. Am. Chem. Soc. 2004; 126: 13198
    • 78b Abell JP, Yamamoto H. J. Am. Chem. Soc. 2008; 130: 10521
  • 79 See ref. 17.
  • 80 Kwong HL, Yeung HL, Yeung CT, Lee WS, Lee CS, Wong WL. Coord. Chem. Rev. 2007; 251: 2188
    • 81a Qi G, Judeh ZM. A. Tetrahedron: Asymmetry 2010; 21: 429
    • 81b Qi G, Ji YQ, Judeh ZM. A. Tetrahedron 2010; 66: 4195
  • 82 Martinez R, Zoli L, Cozzi PG, Ramon DJ, Yus M. Tetrahedron: Asymmetry 2008; 19: 2600
    • 83a Baratta W, Fanfoni L, Magnolia S, Siega K, Rigo P. Eur. J. Inorg. Chem. 2010; 1419
    • 83b Baratta W, Ballico M, Baldino S, Chelucci G, Herdtweck E, Siega K, Magnolia S, Rigo P. Chem. Eur. J. 2008; 14: 9148
    • 83c See ref. 66.
    • 84a Delapierre G, Brunel JM, Constantieux T, Buono G. Tetrahedron: Asymmetry 2001; 12: 1345
    • 84b Delapierre G, Constantieux T, Brunel JM, Buono G. Eur. J. Org. Chem. 2000; 2507
    • 84c Brunel JM, Constantieux T, Buono G. J. Org. Chem. 1999; 64: 8940
  • 85 Delapierre G, Achard M, Buono G. Tetrahedron Lett. 2002; 43: 4025
  • 86 Franciò G, Drommi D, Graiff C, Faraone F, Tiripicchio A. Inorg. Chim. Acta 2002; 338: 59
    • 87a Franciò G, Arena CG, Faraone F, Graiff C, Lanfranchi M, Tiripicchio A. Eur. J. Inorg. Chem. 1999; 1219
    • 87b Franciò G, Faraone F, Leitner W. Angew. Chem. Int. Ed. 2000; 39: 1428
    • 88a Dhayalan V, Sämann C, Knochel P. Chem. Commun. 2015; 51: 3239
    • 88b Dhayalan V, Alcañiz FR, Werner V, Karaghiosoff K, Knochel P. Synthesis 2015; 47: 3972
    • 88c Sämann C, Dhayalan V, Schreiner PR, Knochel P. Org. Lett. 2014; 16: 2418
    • 88d Schlücker T, Dhayalan V, Langhals H, Sämann C, Knochel P. Asian J. Org. Chem. 2015; 4: 763
    • 88e Bunlaksananusorn T, Knochel P. J. Org. Chem. 2004; 69: 4595
    • 88f See ref. 65.
  • 89 Jiang B, Lei Y, Zhao XL. J. Org. Chem. 2008; 73: 7833
  • 90 Ruzziconi R, Santi C, Spizzichino S. Tetrahedron: Asymmetry 2007; 18: 1742
    • 91a Alcock NW, Brown JM, Htimes DI. Tetrahedron: Asymmetry 1993; 4: 743
    • 91b Valk JM, Whitlock GA, Layzell TP, Brown JM. Tetrahedron: Asymmetry 1995; 6: 2593
    • 91c Doucet H, Fernandez E, Layzell TP, Brown JM. Chem. Eur. J. 1999; 5: 1320
    • 91d See ref. 75b.
    • 92a Markò IE, Vanherck JC, Ates A, Tinant B, Declercq JP. Tetrahedron Lett. 2003; 44: 3333
    • 92b Han Z, Wang Z, Zhang X, Ding K. Tetrahedron: Asymmetry 2010; 21: 1529
  • 93 Drury WJ. III, Zimmermann N, Keenan M, Hayashi M, Kaiser S, Goddard R, Pfaltz A. Angew. Chem. Int. Ed. 2004; 43: 70
    • 94a Chelucci G, Orrù G. Tetrahedron Lett. 2005; 46: 3493
    • 94b Chelucci G, Baldino S. Tetrahedron: Asymmetry 2006; 17: 1529
  • 95 Allen DG, Mclaughlin GM, Robertson GB, Steffen WL, Salem G, Wild SB. Inorg. Chem. 1982; 21: 1007
    • 96a Thummel RP, Lefoulon F. J. Org. Chem. 1985; 50: 666
    • 96b Chelucci G, Thummel RP. Chem. Rev. 2002; 102: 3129
    • 96c Saito M, Nakajima M, Hashimoto S. Chem. Commun. 2000; 1851
    • 96d Saito M, Nakajima M, Hashimoto S. Tetrahedron 2000; 56: 9589
    • 96e Chelucci G, Murineddu G, Pinna GA. Tetrahedron: Asymmetry 2004; 15: 1373
    • 96f Malkov AV, Dufková L, Farrugia L, Koćovský P. Angew. Chem. Int. Ed. 2003; 42: 3674
    • 96g Jiao Z, Feng X, Liu B, Chen F, Zhang G, Jiang Y. Eur. J. Org. Chem. 2003; 3818
    • 96h Liu B, Feng X, Chen F, Zhang G, Cui X, Jiang Y. Synlett 2001; 1551
  • 98 Arena CG, Calabro G, Francio G, Faraone F. Tetrahedron: Asymmetry 2000; 11: 2387
  • 99 Qi G, Judeh ZM. A. Synth. Commun. 2012; 42: 1585
  • 100 Nakajima M, Yamamoto S, Yamaguchi Y, Nakamura S, Hashimoto S. Tetrahedron 2003; 59: 7307
  • 101 Jia YX, Zhu SF, Yang Y, Zhou QL. J. Org. Chem. 2006; 71: 75
    • 102a Tan Q, Hayashi M. Org. Lett. 2009; 11: 3314
    • 102b Tanaka T, Tan Q, Iwanaga K, Hayashi M. Carbohydr. Res. 2011; 346: 340
    • 103a Malkov AV, Orsini M, Pernazza D, Muir KW, Langer V, Meghani P, Koćovský P. Org. Lett. 2002; 4: 1047
    • 103b Wrzeszcz Z, Siedlecka R. Catalysts 2021; 4: 444
  • 104 Brunel JM, Campo BD, Buono G. Tetrahedron Lett. 1998; 39: 9663
  • 105 Suga H, Furihata Y, Sakamoto A, Itoh K, Yukihisa OkumuraY, Tsuchida T, Kakehi A, Baba T. J. Org. Chem. 2011; 76: 7377
  • 106 Fraile JM, García JI, José A, Mayoral JA, Roldán M. Org. Lett. 2007; 9: 731
  • 107 See ref. 73.
  • 108 Burk S, Franciò G, Leitner W. Chem. Commun. 2005; 3460
    • 109a Zhang Y, Sigman MS. J. Am. Chem. Soc. 2007; 129: 3076
    • 109b Jensen KH, Webb JD, Sigman MS. J. Am. Chem. Soc. 2010; 132: 17471
    • 110a Zhang R, Xie B, Chen G.-S, Qiu L, Chen Y.-X. Tetrahedron Lett. 2016; 57: 845
    • 110b Pamìes O, Margalef J, Cañellas S, James J, Judge J, Guiry PJ, Moberg C, Bäckvall J.-E, Pfaltz A, Pericas MA, Diéguez M. Chem. Rev. 2021; 121: 4373
    • 110c Chelucci G, Medici S, Saba A. Tetrahedron: Asymmetry 1999; 10: 543
    • 110d Fekner T, Bunz HM, Guiry PJ. Eur. J. Org. Chem. 2008; 5055
    • 110e Drommi D, Saporita M, Bruno G, Faraone F, Scafato P, Rosini C. Dalton Trans. 2007; 1509
    • 110f Sureshbabu R, Saravanan V, Dhayalan V, Mohanakrishnan AK. Eur. J. Org. Chem. 2011; 922
    • 110g Dhayalan V, Clement JA, Jagan R, Mohanakrishnan AK. Eur. J. Org. Chem. 2009; 531
    • 110h Mohanakrishnan AK, Dhayalan V, Clement JA, Sureshbabu RB. R, Kumar NS. Tetrahedron Lett. 2008; 49: 5850
  • 111 Trost BM, Dogra K, Hachiya I, Emura T, Hughes DL, Krska S, Reamer RA, Palucki M, Yasuda N, Reider PJ. Angew. Chem. Int. Ed. 2002; 41: 1929
  • 112 Brunel JM, Tenaglia A, Buono G. Tetrahedron: Asymmetry 2000; 11: 3585
    • 113a Romero EA, Chen G, Gembicky M, Jazzar R, Yu J.-Q, Bertrand G. J. Am. Chem. Soc. 2019; 141: 16726
    • 113b Andrä MS, Schifferer L, Pollok CH, Merten C, Gooßen LJ, Yu J.-Q. Chem. Eur. J. 2019; 25: 8503
  • 114 McDonald RI, White PB, Weinstein AB, Tam CP, Stahl SS. Org. Lett. 2011; 13: 2830