CC BY 4.0 · TH Open 2022; 06(02): e114-e123
DOI: 10.1055/a-1750-1300
Original Article

Pharmacokinetic, Hemostatic, and Anticancer Properties of a Low-Anticoagulant Bovine Heparin

Roberto P. Santos*
1   Hospital Universitário Clementino Fraga Filho and Instituto de Bioquímica Médica Leopoldo de Meis, Laboratório de Tecido Conjuntivo, Hospital Universitário Clementino Fraga Filho and Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
,
Ana M.F. Tovar*
1   Hospital Universitário Clementino Fraga Filho and Instituto de Bioquímica Médica Leopoldo de Meis, Laboratório de Tecido Conjuntivo, Hospital Universitário Clementino Fraga Filho and Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
,
Marcos R. Oliveira
1   Hospital Universitário Clementino Fraga Filho and Instituto de Bioquímica Médica Leopoldo de Meis, Laboratório de Tecido Conjuntivo, Hospital Universitário Clementino Fraga Filho and Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
,
Adriana A. Piquet
1   Hospital Universitário Clementino Fraga Filho and Instituto de Bioquímica Médica Leopoldo de Meis, Laboratório de Tecido Conjuntivo, Hospital Universitário Clementino Fraga Filho and Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
,
Nina V. Capillé
1   Hospital Universitário Clementino Fraga Filho and Instituto de Bioquímica Médica Leopoldo de Meis, Laboratório de Tecido Conjuntivo, Hospital Universitário Clementino Fraga Filho and Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
,
Stephan N.M.C.G. Oliveira
1   Hospital Universitário Clementino Fraga Filho and Instituto de Bioquímica Médica Leopoldo de Meis, Laboratório de Tecido Conjuntivo, Hospital Universitário Clementino Fraga Filho and Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
,
Ana H. Correia
2   Hospital Universitário Clementino Fraga Filho, Serviço de Anatomia Patológica, Hospital Universitário Clementino Fraga Filho, Rio de Janeiro, Brazil
,
José N. Farias
3   Hospital Universitário Clementino Fraga Filho, Laboratório Multidisciplinar de Pesquisa, Hospital Universitário Clementino Fraga Filho, Rio de Janeiro, Brazil
,
Eduardo Vilanova
1   Hospital Universitário Clementino Fraga Filho and Instituto de Bioquímica Médica Leopoldo de Meis, Laboratório de Tecido Conjuntivo, Hospital Universitário Clementino Fraga Filho and Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
,
Paulo A.S. Mourão
1   Hospital Universitário Clementino Fraga Filho and Instituto de Bioquímica Médica Leopoldo de Meis, Laboratório de Tecido Conjuntivo, Hospital Universitário Clementino Fraga Filho and Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
› Author Affiliations
Funding This work was supported by the grants 315847/2020-4 from Conselho Nacional de Desenvolvimento Cientifico e Tecnológico (CNPq) and E26/290.078/2017 from Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ)

Abstract

Heparin is a centennial anticoagulant drug broadly employed for treatment and prophylaxis of thromboembolic conditions. Although unfractionated heparin (UFH) has already been shown to have remarkable pharmacological potential for treating a variety of diseases unrelated with thromboembolism, including cancer, atherosclerosis, inflammation, and virus infections, its high anticoagulant potency makes the doses necessary to exert non-hemostatic effects unsafe due to an elevated bleeding risk. Our group recently developed a new low-anticoagulant bovine heparin (LABH) bearing the same disaccharide building blocks of the UFH gold standard sourced from porcine mucosa (HPI) but with anticoagulant potency approximately 85% lower (approximately 25 and 180 Heparin International Units [IU]/mg). In the present work, we investigated the pharmacokinetics profile, bleeding potential, and anticancer properties of LABH administered subcutaneous into mice. LABH showed pharmacokinetics profile similar to HPI but different from the low-molecular weight heparin (LMWH) enoxaparin and diminished bleeding potential, even at high doses. Subcutaneous treatment with LABH delays the early progression of Lewis lung carcinoma, improves survival, and brings beneficial health outcomes to the mice, without the advent of adverse effects (hemorrhage/mortality) seen in the animals treated with HPI. These results demonstrate that LABH is a promising candidate for prospecting new therapeutic uses for UFH.

Authors' Contributions

A.M.F.T., R.P.S., and P.A.S.M. conceived the research and experimental design; A.M.F.T., R.P.S, A.A.P., M.R.O., N.V.C., S.N.M.C.G.O., J.N.F, and A.H.C conducted the research; A.M.F.T., R.P.S., S.N.M.C.G.O., and E.V. analyzed the data, and R.P.S., A.M.F.T., E.V., and P.A.S.M. wrote the paper.


* These authors contributed equally as first authors.




Publication History

Received: 13 September 2021

Accepted: 20 January 2022

Accepted Manuscript online:
25 January 2022

Article published online:
11 July 2022

© 2022. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution License, permitting unrestricted use, distribution, and reproduction so long as the original work is properly cited. (https://creativecommons.org/licenses/by/4.0/)

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Torri G, Naggi A. Heparin centenary—an ever-young life-saving drug. Int J Cardiol 2016; 212 (Suppl. 01) S1-S4
  • 2 Gunaratne R, Kumar S, Frederiksen JW. et al. Combination of aptamer and drug for reversible anticoagulation in cardiopulmonary bypass. Nat Biotechnol 2018; 36 (07) 606-613
  • 3 Cassinelli G, Naggi A. Old and new applications of non-anticoagulant heparin. Int J Cardiol 2016; 212 (Suppl. 01) S14-S21
  • 4 Hippensteel JA, LaRiviere WB, Colbert JF, Langouët-Astrié CJ, Schmidt EP. Heparin as a therapy for COVID-19: current evidence and future possibilities. Am J Physiol Lung Cell Mol Physiol 2020; 319 (02) L211-L217
  • 5 Chen D. Heparin beyond anti-coagulation. Curr Res Transl Med 2021; 69 (04) 103300
  • 6 Atallah J, Khachfe HH, Berro J, Assi HI. The use of heparin and heparin-like molecules in cancer treatment: a review. Cancer Treat Res Commun 2020; 24: 100192
  • 7 Van Haren RM, Rajaram R, Correa AM. et al. Preoperative heparin for lung cancer resection increases risk of reoperation for bleeding. Semin Thorac Cardiovasc Surg 2020; 32 (02) 337-343
  • 8 Yamaura G, Ito T, Miyaji Y. et al. Therapeutic efficacy of heparin and direct factor Xa inhibitors in cancer-associated cryptogenic ischemic stroke with venous thromboembolism. Thromb Res 2021; 206: 99-103
  • 9 Mousa SA. Heparin, low molecular weight heparin, and derivatives in thrombosis, angiogenesis, and inflammation: emerging links. Semin Thromb Hemost 2007; 33 (05) 524-533
  • 10 Vilanova E, Tovar AMF, Mourão PAS. Imminent risk of a global shortage of heparin caused by the African Swine Fever afflicting the Chinese pig herd. J Thromb Haemost 2019; 17 (02) 254-256
  • 11 van der Meer JY, Kellenbach E, van den Bos LJ. From farm to pharma: an overview of industrial heparin manufacturing methods. Molecules 2017; 22 (06) E1025
  • 12 Al-Hakim A. General Considerations for Diversifying Heparin Drug Products by Improving the Current Heparin Manufacturing Process and Reintroducing Bovine Sourced Heparin to the US Market. Clin Appl Thromb Hemost 2021;10760296211052293
  • 13 Gomes WJ, Leal JC, Braile DM. et al. A Brazilian perspective for the use of bovine heparin in open heart surgery. Int J Cardiol 2016; 223: 611-612
  • 14 Vilanova E, Vairo BC, Oliveira SMCG. et al. Heparins sourced from bovine and porcine mucosa gain exclusive monographs in the Brazilian Pharmacopeia. Front Med (Lausanne) 2019; 6: 16
  • 15 Tovar AMF, Capillé NV, Santos GR. et al. Heparin from bovine intestinal mucosa: glycans with multiple sulfation patterns and anticoagulant effects. Thromb Haemost 2012; 107 (05) 903-915
  • 16 Tovar AMF, Teixeira LA, Rembold SM, Leite Jr M, Lugon JR, Mourão PA. Bovine and porcine heparins: different drugs with similar effects on human haemodialysis. BMC Res Notes 2013; 6: 230
  • 17 Tovar AMF, Santos GR, Capillé NV. et al. Structural and haemostatic features of pharmaceutical heparins from different animal sources: challenges to define thresholds separating distinct drugs. Sci Rep 2016; 6: 35619
  • 18 Tovar AMF, Vairo BC, Oliveira SMCG. et al. Converting the distinct heparins sourced from bovine or porcine mucosa into a single anticoagulant drug. Thromb Haemost 2019; 119 (04) 618-632
  • 19 Mourão PAS, Medeiros LN, Vilanova E, Aquino RS. inventors; Heptech Ltda., assignee. Safe Bovine Heparin, Preparation Method and Application. WIPO Patent No. 2020/163926 A1. August 20, 2020
  • 20 Silva CFS, Motta JM, Teixeira FCOB. et al. Non-anticoagulant heparan sulfate from the ascidian Phallusia nigra prevents colon carcinoma metastasis in mice by disrupting platelet-tumor cell interaction. Cancers (Basel) 2020; 12 (06) 1353
  • 21 Glauser BF, Santos GRC, Silva JD. et al. Chemical and pharmacological aspects of neutralization of heparins from different animal sources by protamine. J Thromb Haemost 2018; 16 (09) 1789-1799
  • 22 Oliveira SN, Santos GR, Glauser BF. et al. Structural and functional analyses of biosimilar enoxaparins available in Brazil. Thromb Haemost 2015; 113 (01) 53-65
  • 23 Glauser BF, Vairo BC, Oliveira CP, Cinelli LP, Pereira MS, Mourão PA. Generic versions of enoxaparin available for clinical use in Brazil are similar to the original drug. J Thromb Haemost 2011; 9 (07) 1419-1422
  • 24 Vilanova E, Glauser BF, Oliveira SM, Tovar AMF, Mourão PAS. Update on Brazilian biosimilar enoxaparins. Expert Rev Hematol 2016; 9 (11) 1015-1021
  • 25 Kandrotas RJ. Heparin pharmacokinetics and pharmacodynamics. Clin Pharmacokinet 1992; 22 (05) 359-374
  • 26 Fareed J, Hoppensteadt D, Walenga J. et al. Pharmacodynamic and pharmacokinetic properties of enoxaparin : implications for clinical practice. Clin Pharmacokinet 2003; 42 (12) 1043-1057
  • 27 Krishnaswamy A, Lincoff AM, Cannon CP. Bleeding complications of unfractionated heparin. Expert Opin Drug Saf 2011; 10 (01) 77-84
  • 28 Piran S, Schulman S. Treatment of bleeding complications in patients on anticoagulant therapy. Blood 2019; 133 (05) 425-435
  • 29 Castelli R, Porro F, Tarsia P. The heparins and cancer: review of clinical trials and biological properties. Vasc Med 2004; 9 (03) 205-213
  • 30 Riddel Jr JP, Aouizerat BE, Miaskowski C, Lillicrap DP. Theories of blood coagulation. J Pediatr Oncol Nurs 2007; 24 (03) 123-131
  • 31 Lippi G, Favaloro EJ, Franchini M, Guidi GC. Milestones and perspectives in coagulation and hemostasis. Semin Thromb Hemost 2009; 35 (01) 9-22
  • 32 Costantino G, Ceriani E, Rusconi AM. et al. Bleeding risk during treatment of acute thrombotic events with subcutaneous LMWH compared to intravenous unfractionated heparin; a systematic review. PLoS One 2012; 7 (09) e44553
  • 33 Lazrak HH, René É, Elftouh N, Leblanc M, Lafrance JP. Safety of low-molecular-weight heparin compared to unfractionated heparin in hemodialysis: a systematic review and meta-analysis. BMC Nephrol 2017; 18 (01) 187
  • 34 Mohan CD, Hari S, Preetham HD. et al. Targeting heparanase in cancer: inhibition by synthetic, chemically modified, and natural compounds. iScience 2019; 15: 360-390
  • 35 Andrgie AT, Birhan YS, Mekonnen TW. et al. Redox-responsive heparin-chlorambucil conjugate polymeric prodrug for improved anti-tumor activity. Polymers (Basel) 2019; 12 (01) 43
  • 36 Sarantis P, Bokas A, Papadimitropoulou A. et al. Combinatorial treatment of tinzaparin and chemotherapy can induce a significant antitumor effect in pancreatic cancer. Int J Mol Sci 2021; 22 (13) 7053
  • 37 Choi JG, Kim JM, Kang DW. et al. Inoculation of Lewis lung carcinoma cells enhances formalin-induced pain behavior and spinal Fos expression in mice. J Vet Sci 2017; 18 (03) 267-272
  • 38 Borsig L. Antimetastatic activities of heparins and modified heparins. Experimental evidence. Thromb Res 2010; 125 (Suppl. 02) S66-S71
  • 39 Chen Y, Peng J, Han M. et al. A low-molecular-weight heparin-coated doxorubicin-liposome for the prevention of melanoma metastasis. J Drug Target 2015; 23 (04) 335-346
  • 40 Vijaya Kumar A, Salem Gassar E, Spillmann D. et al. HS3ST2 modulates breast cancer cell invasiveness via MAP kinase- and Tcf4 (Tcf7l2)-dependent regulation of protease and cadherin expression. Int J Cancer 2014; 135 (11) 2579-2592
  • 41 Weissmann M, Arvatz G, Horowitz N. et al. Heparanase-neutralizing antibodies attenuate lymphoma tumor growth and metastasis. Proc Natl Acad Sci U S A 2016; 113 (03) 704-709
  • 42 Fortuna-Costa A, Gomes AM, Kozlowski EO, Stelling MP, Pavão MS. Extracellular galectin-3 in tumor progression and metastasis. Front Oncol 2014; 4: 138
  • 43 Uzun Y, Akdogan E, Ozdemir F, Ovali E. The effects of heparin on DLD-1 colon cancer cell line. Bratisl Lek Listy 2009; 110 (01) 3-6
  • 44 Mousa SA. Anti-thrombotics in thrombosis and cancer. Future Oncol 2005; 1 (03) 395-403
  • 45 Nevo N, Ghanem S, Crispel Y. et al. Heparanase level in the microcirculation as a possible modulator of the metastatic process. Am J Pathol 2019; 189 (08) 1654-1663
  • 46 Liu J, Xie J, Huang Y, Xie J, Yan X. TFPI-2 inhibits the invasion and metastasis of bladder cancer cells. Prog Urol 2021; 31 (02) 71-77
  • 47 Patel NJ, Sharon C, Baranwal S, Boothello RS, Desai UR, Patel BB. Heparan sulfate hexasaccharide selectively inhibits cancer stem cells self-renewal by activating p38 MAP kinase. Oncotarget 2016; 7 (51) 84608-84622
  • 48 Kovacsovics TJ, Mims A, Salama ME. et al. Combination of the low anticoagulant heparin CX-01 with chemotherapy for the treatment of acute myeloid leukemia. Blood Adv 2018; 2 (04) 381-389
  • 49 Darwish NHE, Godugu K, Mousa SA. Sulfated non-anticoagulant low molecular weight heparin in the prevention of cancer and non-cancer associated thrombosis without compromising hemostasis. Thromb Res 2021; 200: 109-114
  • 50 Sudha T, Yalcin M, Lin HY. et al. Suppression of pancreatic cancer by sulfated non-anticoagulant low molecular weight heparin. Cancer Lett 2014; 350 (1-2): 25-33
  • 51 Kuderer NM, Khorana AA, Lyman GH, Francis CW. A meta-analysis and systematic review of the efficacy and safety of anticoagulants as cancer treatment: impact on survival and bleeding complications. Cancer 2007; 110 (05) 1149-1161