Semin Liver Dis 2022; 42(02): 173-187
DOI: 10.1055/a-1765-0056
Review Article

Management of Multidrug-Resistant Infections in Cirrhosis

Charles E. Gallaher
1   Institute of Liver Studies, King's College Hospital NHS Foundation Trust, London, United Kingdom
,
Debbie L. Shawcross
1   Institute of Liver Studies, King's College Hospital NHS Foundation Trust, London, United Kingdom
2   Institute of Liver Studies, School of Immunology and Microbial Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
› Institutsangaben


Abstract

The World Health Organization describes antimicrobial resistance as one of the biggest threats to global health, food security, and development with indiscriminate use of antimicrobials globally driving the emergence of multidrug-resistant bacteria, resistant to 60% of antimicrobials in some countries. Infections with multidrug-resistant organisms (MDROs) have increased in recent decades in patients with cirrhosis, who are frequently prescribed antibiotics, regularly undergo invasive procedures such as large volume paracentesis, and have recurrent hospitalizations, posing a particular risk in this already immunocompromised cohort of patients. In this review, we explore mechanisms underlying this vulnerability to MDRO infection; the effect of bacterial infections on disease course in cirrhosis; prevalence of MDROs in patients with cirrhosis; outcomes following MDRO infection; fungal infections; antibiotics and their efficacy; and management of MDRO infections in terms of detection, antimicrobial and nonantimicrobial treatments, prophylaxis, antibiotic stewardship, the gut microbiome, and technological interventions.

Authors' Contributions

The manuscript was written by C.E.G. and revised by D.L.S. All authors approved the final submitted manuscript.


Financial Support

No funding to declare.




Publikationsverlauf

Accepted Manuscript online:
07. Februar 2022

Artikel online veröffentlicht:
23. Juni 2022

© 2022. Thieme. All rights reserved.

Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA

 
  • References

  • 1 O'Neill J. Antimicrobial Resistance: Tackling a Crisis for the Health and Wealth of Nations. London: HM Government UK and Wellcome Trust UK; Published online 2014. Accessed October 28, 2021 at: https://amr-review.org/sites/default/files/AMR%20Review%20Paper%20-%20Tackling%20a%20crisis%20for%20the%20health%20and%20wealth%20of%20nations_1.pdf
  • 2 World Health Organization. Antimicrobial resistance. Published October 13, 2020. Accessed October 28, 2021 at: https://www.who.int/news-room/fact-sheets/detail/antimicrobial-resistance
  • 3 Magiorakos AP, Srinivasan A, Carey RB. et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect 2012; 18 (03) 268-281
  • 4 Fernández J, Piano S, Bartoletti M, Wey EQ. Management of bacterial and fungal infections in cirrhosis: the MDRO challenge. J Hepatol 2021; 75 (Suppl. 01) S101-S117
  • 5 Schmidt ML, Barritt AS, Orman ES, Hayashi PH. Decreasing mortality among patients hospitalized with cirrhosis in the United States from 2002 through 2010. Gastroenterology 2015; 148 (05) 967-977.e2
  • 6 Piano S, Tonon M, Angeli P. Changes in the epidemiology and management of bacterial infections in cirrhosis. Clin Mol Hepatol 2021; 27 (03) 437-445
  • 7 Righi E. Management of bacterial and fungal infections in end stage liver disease and liver transplantation: current options and future directions. World J Gastroenterol 2018; 24 (38) 4311-4329
  • 8 Edwards LA, Goldenberg SD, Shawcross DL. Meeting the challenge of antimicrobial resistance in cirrhosis: the invisible threat that lies within. Gastroenterology 2021; 161 (02) 413-415
  • 9 Albillos A, Lario M, Álvarez-Mon M. Cirrhosis-associated immune dysfunction: distinctive features and clinical relevance. J Hepatol 2014; 61 (06) 1385-1396
  • 10 Cirera I, Bauer TM, Navasa M. et al. Bacterial translocation of enteric organisms in patients with cirrhosis. J Hepatol 2001; 34 (01) 32-37
  • 11 Shimasaki T, Rhee Y, Yelin RD. et al. 1764. The gut: a veiled reservoir for multidrug-resistant organisms (MDROs) below the tip of the iceberg. Open Forum Infect Dis 2018; 5 (suppl_1): S63
  • 12 Kubes P, Mehal WZ. Sterile inflammation in the liver. Gastroenterology 2012; 143 (05) 1158-1172
  • 13 Fernández J, Acevedo J, Wiest R. et al; European Foundation for the Study of Chronic Liver Failure. Bacterial and fungal infections in acute-on-chronic liver failure: prevalence, characteristics and impact on prognosis. Gut 2018; 67 (10) 1870-1880
  • 14 Taylor NJ, Manakkat Vijay GK, Abeles RD. et al. The severity of circulating neutrophil dysfunction in patients with cirrhosis is associated with 90-day and 1-year mortality. Aliment Pharmacol Ther 2014; 40 (06) 705-715
  • 15 Cardoso CC, Matiollo C, Pereira CHJ. et al. Patterns of dendritic cell and monocyte subsets are associated with disease severity and mortality in liver cirrhosis patients. Sci Rep 2021; 11 (01) 5923
  • 16 O'Brien AJ, Fullerton JN, Massey KA. et al. Immunosuppression in acutely decompensated cirrhosis is mediated by prostaglandin E2. Nat Med 2014; 20 (05) 518-523
  • 17 Bourke CD, Berkley JA, Prendergast AJ. Immune dysfunction as a cause and consequence of malnutrition. Trends Immunol 2016; 37 (06) 386-398
  • 18 Szabo G, Saha B. Alcohol's effect on host defense. Alcohol Res 2015; 37 (02) 159-170
  • 19 Jalan R, Fernandez J, Wiest R. et al. Bacterial infections in cirrhosis: a position statement based on the EASL Special Conference 2013. J Hepatol 2014; 60 (06) 1310-1324
  • 20 Trebicka J, Fernandez J, Papp M. et al; PREDICT STUDY group of the EASL-CLIF CONSORTIUM. PREDICT identifies precipitating events associated with the clinical course of acutely decompensated cirrhosis. J Hepatol 2021; 74 (05) 1097-1108
  • 21 Bajaj JS, O'Leary JG, Reddy KR. et al; NACSELD. Second infections independently increase mortality in hospitalized patients with cirrhosis: the North American consortium for the study of end-stage liver disease (NACSELD) experience. Hepatology 2012; 56 (06) 2328-2335
  • 22 Arvaniti V, D'Amico G, Fede G. et al. Infections in patients with cirrhosis increase mortality four-fold and should be used in determining prognosis. Gastroenterology 2010; 139 (04) 1246-1256 , 1256.e1–1256.e5
  • 23 Bert F, Larroque B, Dondero F. et al. Risk factors associated with preoperative fecal carriage of extended-spectrum β-lactamase-producing Enterobacteriaceae in liver transplant recipients. Transpl Infect Dis 2014; 16 (01) 84-89
  • 24 Fernández J, Prado V, Trebicka J. et al; European Foundation for the Study of Chronic Liver Failure (EF-Clif). Multidrug-resistant bacterial infections in patients with decompensated cirrhosis and with acute-on-chronic liver failure in Europe. J Hepatol 2019; 70 (03) 398-411
  • 25 Piano S, Singh V, Caraceni P. et al; International Club of Ascites Global Study Group. Epidemiology and effects of bacterial infections in patients with cirrhosis worldwide. Gastroenterology 2019; 156 (05) 1368-1380.e10
  • 26 Fernández J, Acevedo J, Castro M. et al. Prevalence and risk factors of infections by multiresistant bacteria in cirrhosis: a prospective study. Hepatology 2012; 55 (05) 1551-1561
  • 27 Moreau R, Elkrief L, Bureau C. et al; NORFLOCIR Trial Investigators. Effects of long-term norfloxacin therapy in patients with advanced cirrhosis. Gastroenterology 2018; 155 (06) 1816-1827.e9
  • 28 Bajaj JS, OʼLeary JG, Tandon P. et al. Nosocomial infections are frequent and negatively impact outcomes in hospitalized patients with cirrhosis. Am J Gastroenterol 2019; 114 (07) 1091-1100
  • 29 Bartoletti M, Giannella M, Lewis R. et al; ESGBIS/BICHROME Study Group. A prospective multicentre study of the epidemiology and outcomes of bloodstream infection in cirrhotic patients. Clin Microbiol Infect 2018; 24 (05) 546.e1-546.e8
  • 30 Bartoletti M, Rinaldi M, Pasquini Z. et al. Risk factors for candidaemia in hospitalized patients with liver cirrhosis: a multicentre case-control-control study. Clin Microbiol Infect 2021; 27 (02) 276-282
  • 31 Bajaj JS, Kamath PS, Reddy KR. The evolving challenge of infections in cirrhosis. N Engl J Med 2021; 384 (24) 2317-2330
  • 32 Clancy CJ, Nguyen MH. Finding the "missing 50%" of invasive candidiasis: how nonculture diagnostics will improve understanding of disease spectrum and transform patient care. Clin Infect Dis 2013; 56 (09) 1284-1292
  • 33 Centers for Disease Control and Prevention. Antibiotic Resistance Threats in the United States. 2019 DOI: 10.15620/cdc:82532
  • 34 Toda M, Williams SR, Berkow EL. et al. Population-based active surveillance for culture-confirmed candidemia - four sites, United States, 2012-2016. MMWR Surveill Summ 2019; 68 (08) 1-15
  • 35 Dimopoulos G, Ntziora F, Rachiotis G, Armaganidis A, Falagas ME. Candida albicans versus non-albicans intensive care unit-acquired bloodstream infections: differences in risk factors and outcome. Anesth Analg 2008; 106 (02) 523-529
  • 36 Pappas PG, Kauffman CA, Andes DR. et al. Clinical practice guideline for the management of candidiasis: 2016 update by the Infectious Diseases Society of America. Clin Infect Dis 2016; 62 (04) e1-e50
  • 37 Fernández J, Navasa M, Gómez J. et al. Bacterial infections in cirrhosis: epidemiological changes with invasive procedures and norfloxacin prophylaxis. Hepatology 2002; 35 (01) 140-148
  • 38 Caly WR, Strauss E. A prospective study of bacterial infections in patients with cirrhosis. J Hepatol 1993; 18 (03) 353-358
  • 39 Ginés P, Rimola A, Planas R. et al. Norfloxacin prevents spontaneous bacterial peritonitis recurrence in cirrhosis: results of a double-blind, placebo-controlled trial. Hepatology 1990; 12 (4 Pt 1): 716-724
  • 40 Fernández J, Navasa M, Planas R. et al. Primary prophylaxis of spontaneous bacterial peritonitis delays hepatorenal syndrome and improves survival in cirrhosis. Gastroenterology 2007; 133 (03) 818-824
  • 41 Oliphant CM, Green GM. Quinolones: a comprehensive review. Am Fam Physician 2002; 65 (03) 455-464
  • 42 Reuken PA, Pletz MW, Baier M, Pfister W, Stallmach A, Bruns T. Emergence of spontaneous bacterial peritonitis due to enterococci - risk factors and outcome in a 12-year retrospective study. Aliment Pharmacol Ther 2012; 35 (10) 1199-1208
  • 43 Silva ON, Franco OL, Porto WF. β-Lactamase inhibitor peptides as the new strategies to overcome bacterial resistance. Drugs Today (Barc) 2018; 54 (12) 737-746
  • 44 Weldhagen GF, Poirel L, Nordmann P. Ambler class A extended-spectrum β-lactamases in Pseudomonas aeruginosa: novel developments and clinical impact. Antimicrob Agents Chemother 2003; 47 (08) 2385-2392
  • 45 Hall BG, Barlow M. Revised Ambler classification of beta-lactamases. J Antimicrob Chemother 2005; 55 (06) 1050-1051
  • 46 Overview of carbapenemase-producing gram-negative bacilli - UpToDate. Accessed January 15, 2022 at: https://www.uptodate.com/contents/overview-of-carbapenemase-producing-gram-negative-bacilli?search=carbapenem%20resistance%20&source=search_result&selectedTitle=1~18&usage_type=default&display_rank=1
  • 47 Centers for Disease Control and Prevention. CRE Technical Information. Published 2019. Accessed January 15, 2022 at: https://www.cdc.gov/hai/organisms/cre/technical-info.html
  • 48 Queenan AM, Bush K. Carbapenemases: the versatile β-lactamases. Clin Microbiol Rev 2007; 20 (03) 440-458
  • 49 Walther-Rasmussen J, Høiby N. OXA-type carbapenemases. J Antimicrob Chemother 2006; 57 (03) 373-383
  • 50 Public Health England. Framework of actions to contain carbapenemase-producing Enterobacterales. Published online 2020. Accessed January 15, 2022 at: https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/923385/Framework_of_actions_to_contain_CPE.pdf
  • 51 Richter SS, Marchaim D. Screening for carbapenem-resistant Enterobacteriaceae: who, when, and how?. Virulence 2017; 8 (04) 417-426
  • 52 Rimola A, García-Tsao G, Navasa M. et al. Diagnosis, treatment and prophylaxis of spontaneous bacterial peritonitis: a consensus document. International Ascites Club. J Hepatol 2000; 32 (01) 142-153
  • 53 Runyon BA, Canawati HN, Akriviadis EA. Optimization of ascitic fluid culture technique. Gastroenterology 1988; 95 (05) 1351-1355
  • 54 British Association for the Study of the Liver BS of G. Patient details Decompensated Cirrhosis Care Bundle-First 24 Hours. Accessed October 31, 2021 at: https://www.bsg.org.uk/wp-content/uploads/2019/12/BSG-BASL-Decompensated-Cirrhosis-Care-Bundle-First-24-Hours.pdf
  • 55 European Association for the Study of the Liver. EASL clinical practice guidelines on the management of ascites, spontaneous bacterial peritonitis, and hepatorenal syndrome in cirrhosis. J Hepatol 2010; 53 (03) 397-417
  • 56 Angeli P, Bernardi M, Villanueva C. et al; European Association for the Study of the Liver. Electronic address: easloffice@easloffice.eu, European Association for the Study of the Liver. EASL Clinical Practice Guidelines for the management of patients with decompensated cirrhosis. J Hepatol 2018; 69 (02) 406-460
  • 57 Fernández J, Gustot T. Management of bacterial infections in cirrhosis. J Hepatol 2012; 56 (Suppl. 01) S1-S12
  • 58 Ferrer R, Martin-Loeches I, Phillips G. et al. Empiric antibiotic treatment reduces mortality in severe sepsis and septic shock from the first hour: results from a guideline-based performance improvement program. Crit Care Med 2014; 42 (08) 1749-1755
  • 59 Piano S, Brocca A, Mareso S, Angeli P. Infections complicating cirrhosis. Liver Int 2018; 38 (Suppl. 01) 126-133
  • 60 Merli M, Lucidi C, Di Gregorio V. et al. An empirical broad spectrum antibiotic therapy in health-care-associated infections improves survival in patients with cirrhosis: a randomized trial. Hepatology 2016; 63 (05) 1632-1639
  • 61 Kim SW, Yoon JS, Park J. et al. Empirical treatment with carbapenem vs third-generation cephalosporin for treatment of spontaneous bacterial peritonitis. Clin Gastroenterol Hepatol 2021; 19 (05) 976-986.e5
  • 62 Piano S, Fasolato S, Salinas F. et al. The empirical antibiotic treatment of nosocomial spontaneous bacterial peritonitis: results of a randomized, controlled clinical trial. Hepatology 2016; 63 (04) 1299-1309
  • 63 Pericleous M, Sarnowski A, Moore A, Fijten R, Zaman M. The clinical management of abdominal ascites, spontaneous bacterial peritonitis and hepatorenal syndrome: a review of current guidelines and recommendations. Eur J Gastroenterol Hepatol 2016; 28 (03) e10-e18
  • 64 Costelloe C, Metcalfe C, Lovering A, Mant D, Hay AD. Effect of antibiotic prescribing in primary care on antimicrobial resistance in individual patients: systematic review and meta-analysis. BMJ 2010; 340 (7756): c2096
  • 65 Llewelyn MJ, Fitzpatrick JM, Darwin E. et al. The antibiotic course has had its day. BMJ 2017; 358: j3418
  • 66 Bartoletti M, Giannella M, Lewis RE. et al; ESGBIS/BICHROME study group. Extended infusion of β-lactams for bloodstream infection in patients with liver cirrhosis: an observational multicenter study. Clin Infect Dis 2019; 69 (10) 1731-1739
  • 67 Pea F, Viale P. Bench-to-bedside review: appropriate antibiotic therapy in severe sepsis and septic shock–does the dose matter?. Crit Care 2009; 13 (03) 214
  • 68 Biggins SW, Angeli P, Garcia-Tsao G. et al. Diagnosis, evaluation, and management of ascites, spontaneous bacterial peritonitis and hepatorenal syndrome: 2021 Practice Guidance by the American Association for the Study of Liver Diseases. Hepatology 2021; 74 (02) 1014-1048
  • 69 Fernández J, Bert F, Nicolas-Chanoine MH. The challenges of multi-drug-resistance in hepatology. J Hepatol 2016; 65 (05) 1043-1054
  • 70 Aithal GP, Palaniyappan N, China L. et al. Guidelines on the management of ascites in cirrhosis. Gut 2021; 70 (01) 9-29
  • 71 Garcia-Tsao G, Sanyal AJ, Grace ND, Carey W. Practice Guidelines Committee of the American Association for the Study of Liver Diseases, Practice Parameters Committee of the American College of Gastroenterology. Prevention and management of gastroesophageal varices and variceal hemorrhage in cirrhosis. Hepatology 2007; 46 (03) 922-938
  • 72 Berry PS, Rosenberger LH, Guidry CA, Agarwal A, Pelletier S, Sawyer RG. Intraoperative versus extended antibiotic prophylaxis in liver transplant surgery: a randomized controlled pilot trial. Liver Transpl 2019; 25 (07) 1043-1053
  • 73 Senzolo M, Cholongitas E, Burra P. et al. β-Blockers protect against spontaneous bacterial peritonitis in cirrhotic patients: a meta-analysis. Liver Int 2009; 29 (08) 1189-1193
  • 74 Reiberger T, Ferlitsch A, Payer BA. et al; Vienna Hepatic Hemodynamic Lab. Non-selective betablocker therapy decreases intestinal permeability and serum levels of LBP and IL-6 in patients with cirrhosis. J Hepatol 2013; 58 (05) 911-921
  • 75 Kedarisetty CK, Anand L, Bhardwaj A. et al. Combination of granulocyte colony-stimulating factor and erythropoietin improves outcomes of patients with decompensated cirrhosis. Gastroenterology 2015; 148 (07) 1362-70.e7
  • 76 Laique S, Zhang N, Hewitt WR. et al. Oral Abstracts (Abstracts 1–288). Hepatology 2019; 70 (S1): 1-187
  • 77 Yan K, Garcia-Tsao G. Novel prevention strategies for bacterial infections in cirrhosis. Expert Opin Pharmacother 2016; 17 (05) 689-701
  • 78 World Health Organization. Global action plan on antimicrobial resistance. Published 2016. Accessed October 30, 2021 at: https://www.who.int/publications/i/item/9789241509763
  • 79 Centers for Disease Control and Prevention. Core Elements of Hospital Antibiotic Stewardship Programs. Published 2019. Accessed November 7, 2021 at: https://www.cdc.gov/antibiotic-use/core-elements/hospital.html
  • 80 Laxminarayan R, Chaudhury RR. Antibiotic resistance in India: drivers and opportunities for action. PLoS Med 2016; 13 (03) e1001974
  • 81 Robins GW, Wellington K. Rifaximin: a review of its use in the management of traveller's diarrhoea. Drugs 2005; 65 (12) 1697-1713
  • 82 Koo HL, DuPont HL. Rifaximin: a unique gastrointestinal-selective antibiotic for enteric diseases. Curr Opin Gastroenterol 2010; 26 (01) 17-25
  • 83 Patel VC, Lee S, McPhail MJW. et al. Rifaximin-α reduces gut-derived inflammation and mucin degradation in cirrhosis and encephalopathy: RIFSYS randomised controlled trial. J Hepatol 2022; 76 (02) 332-342
  • 84 Lv XY, Ding HG, Zheng JF, Fan CL, Li L. Rifaximin improves survival in cirrhotic patients with refractory ascites: a real-world study. World J Gastroenterol 2020; 26 (02) 199-218
  • 85 Mariani M, Zuccaro V, Patruno SFA. et al. The impact of rifaximin in the prevention of bacterial infections in cirrhosis. Eur Rev Med Pharmacol Sci 2017; 21 (05) 1151-1158
  • 86 Kang SH, Lee YB, Lee JH. et al. Rifaximin treatment is associated with reduced risk of cirrhotic complications and prolonged overall survival in patients experiencing hepatic encephalopathy. Aliment Pharmacol Ther 2017; 46 (09) 845-855
  • 87 Salehi S, Tranah TH, Lim S. et al. Rifaximin reduces the incidence of spontaneous bacterial peritonitis, variceal bleeding and all-cause admissions in patients on the liver transplant waiting list. Aliment Pharmacol Ther 2019; 50 (04) 435-441
  • 88 Assem M, Elsabaawy M, Abdelrashed M. et al. Efficacy and safety of alternating norfloxacin and rifaximin as primary prophylaxis for spontaneous bacterial peritonitis in cirrhotic ascites: a prospective randomized open-label comparative multicenter study. Hepatol Int 2016; 10 (02) 377-385
  • 89 Lutz P, Parcina M, Bekeredjian-Ding I. et al. Impact of rifaximin on the frequency and characteristics of spontaneous bacterial peritonitis in patients with liver cirrhosis and ascites. PLoS One 2014; 9 (04) e93909
  • 90 Bass NM, Mullen KD, Sanyal A. et al. Rifaximin treatment in hepatic encephalopathy. N Engl J Med 2010; 362 (12) 1071-1081
  • 91 Debbia EA, Maioli E, Roveta S, Marchese A. Effects of rifaximin on bacterial virulence mechanisms at supra- and sub-inhibitory concentrations. J Chemother 2008; 20 (02) 186-194
  • 92 Tandon P, Delisle A, Topal JE, Garcia-Tsao G. High prevalence of antibiotic-resistant bacterial infections among patients with cirrhosis at a US liver center. Clin Gastroenterol Hepatol 2012; 10 (11) 1291-1298
  • 93 Reigadas E, Alcalá L, Gómez J. et al. Breakthrough clostridium difficile infection in cirrhotic patients receiving rifaximin. Clin Infect Dis 2018; 66 (07) 1086-1091
  • 94 Feuerstadt P, Hong SJ, Brandt LJ. Chronic rifaximin use in cirrhotic patients is associated with decreased rate of C. difficile infection. Dig Dis Sci 2020; 65 (02) 632-638
  • 95 Chang JY, Kim SE, Kim TH. et al. Emergence of rifampin-resistant staphylococci after rifaximin administration in cirrhotic patients. PLoS One 2017; 12 (10) e0186120
  • 96 Crum-Cianflone NF, Sullivan E, Ballon-Landa G. Fecal microbiota transplantation and successful resolution of multidrug-resistant-organism colonization. J Clin Microbiol 2015; 53 (06) 1986-1989
  • 97 Hui W, Li T, Liu W, Zhou C, Gao F. Fecal microbiota transplantation for treatment of recurrent C. difficile infection: an updated randomized controlled trial meta-analysis. PLoS One 2019; 14 (01) e0210016
  • 98 Tavoukjian V. Faecal microbiota transplantation for the decolonization of antibiotic-resistant bacteria in the gut: a systematic review and meta-analysis. J Hosp Infect 2019; 102 (02) 174-188
  • 99 Merrick B, Robinson E, Bunce C. et al. Faecal microbiota transplant to ERadicate gastrointestinal carriage of Antibiotic Resistant Organisms (FERARO): a prospective, randomised placebo-controlled feasibility trial. BMJ Open 2020; 10 (05) e038847
  • 100 Perez KK, Olsen RJ, Musick WL. et al. Integrating rapid pathogen identification and antimicrobial stewardship significantly decreases hospital costs. Arch Pathol Lab Med 2013; 137 (09) 1247-1254
  • 101 Sattler J, Brunke A, Hamprecht A. Evaluation of CARBA PAcE, a novel rapid test for detection of carbapenemase-producing Enterobacterales . J Med Microbiol 2021; 70 (02) 001290
  • 102 Bogaerts P, Berger AS, Evrard S, Huang TD. Comparison of two multiplex immunochromatographic assays for the rapid detection of major carbapenemases in Enterobacterales. J Antimicrob Chemother 2020; 75 (06) 1491-1494
  • 103 Kim JH, Kim TS, Jung HG. et al. Prospective evaluation of a rapid antimicrobial susceptibility test (QMAC-dRAST) for selecting optimal targeted antibiotics in positive blood culture. J Antimicrob Chemother 2019; 74 (08) 2255-2260
  • 104 Knabl L, Huber S, Lass-Flörl C, Fuchs S. Comparison of novel approaches for expedited pathogen identification and antimicrobial susceptibility testing against routine blood culture diagnostics. Lett Appl Microbiol 2021; 73 (01) 2-8
  • 105 Carretto E, Bardaro M, Russello G, Mirra M, Zuelli C, Barbarini D. Comparison of the Staphylococcus QuickFISH BC test with the tube coagulase test performed on positive blood cultures for evaluation and application in a clinical routine setting. J Clin Microbiol 2013; 51 (01) 131-135
  • 106 Martinez RM, Bauerle ER, Fang FC, Butler-Wu SM. Evaluation of three rapid diagnostic methods for direct identification of microorganisms in positive blood cultures. J Clin Microbiol 2014; 52 (07) 2521-2529
  • 107 Sun L, Li L, Du S, Liu Y, Cao B. An evaluation of the Unyvero pneumonia system for rapid detection of microorganisms and resistance markers of lower respiratory infections-a multicenter prospective study on ICU patients. Eur J Clin Microbiol Infect Dis 2021; 40 (10) 2113-2121
  • 108 Drevinek P, Hurych J, Antuskova M. et al. Direct detection of ESKAPEc pathogens from whole blood using the T2Bacteria Panel allows early antimicrobial stewardship intervention in patients with sepsis. MicrobiologyOpen 2021; 10 (03) e1210
  • 109 Camp I, Spettel K, Willinger B. Molecular methods for the diagnosis of invasive candidiasis. J Fungi (Basel) 2020; 6 (03) 101
  • 110 Giannella M, Pankey GA, Pascale R, Miller VM, Miller LE, Seitz T. Antimicrobial and resource utilization with T2 magnetic resonance for rapid diagnosis of bloodstream infections: systematic review with meta-analysis of controlled studies. Expert Rev Med Devices 2021; 18 (05) 473-482
  • 111 Ulrich MP, Christensen DR, Coyne SR. et al. Evaluation of the Cepheid GeneXpert system for detecting Bacillus anthracis. J Appl Microbiol 2006; 100 (05) 1011-1016
  • 112 Ben-Zvi H, Drozdinsky G, Kushnir S. et al. Influence of GeneXpert MRSA/SA test implementation on clinical outcomes of Staphylococcus aureus bacteremia - a before-after retrospective study. Diagn Microbiol Infect Dis 2019; 93 (02) 120-124
  • 113 Marlowe EM, Novak SM, Dunn JJ. et al. Performance of the GeneXpert enterovirus assay for detection of enteroviral RNA in cerebrospinal fluid. J Clin Virol 2008; 43 (01) 110-113
  • 114 Al-Kindi N, Al-Shukri I, Al-Rashdi A. et al. Validation of GeneXpert testing for SARS-CoV-2 RNA in eight hospital laboratories in Oman. Pan Afr Med J 2021; 40: 2
  • 115 Mulengwa DL, Monyama MC, Lebelo SL. Evaluation of the GeneXpert MTB/RIF assay performance in sputum samples with various characteristics from presumed pulmonary tuberculosis patients in Shiselweni region, Eswatini. Infect Dis 2022; 54 (03) 170-177
  • 116 Gritte AS, Morneau KM, Frei CR, Cadena-Zuluaga JA, Walter EA, Hopkins TL. Clinical impact of implementation of rapid diagnostic testing of blood cultures with Staphylococcus aureus on patient outcomes. Diagn Microbiol Infect Dis 2021; 101 (03) 115474
  • 117 Kim YK, Lee JH, Kim SY. et al. Rapid molecular tests for detecting respiratory pathogens reduced the use of antibiotics in children. Antibiotics (Basel) 2021; 10 (03) 283
  • 118 Pardo J, Klinker KP, Borgert SJ, Butler BM, Rand KH, Iovine NM. Detection of Neisseria meningitidis from negative blood cultures and cerebrospinal fluid with the FilmArray blood culture identification panel. J Clin Microbiol 2014; 52 (06) 2262-2264
  • 119 Szymankiewicz M, Nakonowska B. Rapid detection of bloodstream pathogens in oncologic patients with a FilmArray Multiplex PCR assay: a comparison with culture methods. Pol J Microbiol 2018; 67 (01) 103-107
  • 120 Sansot M, Fradin E, Chenouard R. et al. Performance of the extended use of the FilmArray® BCID panel kit for bronchoalveolar lavage analysis. Mol Biol Rep 2019; 46 (03) 2685-2692
  • 121 Patel VC, Williams R. Antimicrobial resistance in chronic liver disease. Hepatol Int 2020; 14 (01) 24-34