Synthesis 2022; 54(16): 3568-3587
DOI: 10.1055/a-1786-6578
feature

On the Copper-Promoted Backbone Arylation of Histidine-Containing Peptides Using Triarylbismuthines

Hwai-Chien Chan
,
Alexandre Gagnon
This work was supported by the Natural Sciences and Engineering Research Council of Canada (NSERC), the Centre in Green Chemistry and Catalysis (CGCC), and Boehringer Ingelheim Pharmaceuticals Inc. through a Scientific Advancement Grant.


This paper is dedicated to the memory Dr. Michael Bös for his remarkable contribution to the pharmaceutical industry in the Montreal area and his friendship.

Abstract

We report herein our detailed investigation on the histidine-directed backbone arylation of histidine-containing peptides using triarylbismuth reagents. The reaction proceeds on the backbone NH of the amino acid that precedes the histidine, the so-called n–1 position. The protocol is applicable to dipeptides where the histidine is located at the C-terminus and to tripeptides where the histidine occupies the central position. The transformation is promoted by copper(II) acetate in the presence of phenanthroline (Phen) and diisopropylethylamine in dichloromethane at 50 °C under oxygen. An excellent scope was observed for the triarylbismuthines. In all cases, the imidazole ring of the histidine is protected with a trityl group to prevent the arylation of the side chain. An ATCUN-like model is proposed to explain the observed results.

Supporting Information



Publication History

Received: 10 February 2022

Accepted after revision: 02 March 2022

Accepted Manuscript online:
02 March 2022

Article published online:
10 May 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Gagnon A, Benoit E, Le Roch A. Sci. Synth., Knowl. Updates 2018; 4: 1
    • 1b Gagnon A, Dansereau J, Le Roch A. Synthesis 2017; 49: 1707
    • 1c Condon S, Pichon C, Davi M. Org. Prep. Proced. Int. 2014; 46: 89
    • 1d Shimada S, Rao ML. N. Top. Curr. Chem. 2012; 311: 199
    • 1e Bismuth-Mediated Organic Reactions. In Topics in Current Chemistry, Vol. 311. Ollevier T. Springer; Berlin: 2012
    • 2a Barton DH. R, Lester DJ, Motherwell WB, Papoula MT. B. J. Chem. Soc., Chem. Commun. 1980; 246
    • 2b Barton DH. R, Bhatnagar NY, Finet J.-P, Motherwell WB. Tetrahedron 1986; 42: 3111
    • 2c Barton DH. R, Finet J.-P, Khamsi J. Tetrahedron Lett. 1987; 28: 887
    • 2d Dodonov VA, Gushchin AV, Brilkina TG. Zh. Obshch. Khim. 1985; 55: 2514
    • 3a Gray PA, Burford N. Coord. Chem. Rev. 2016; 324: 1
    • 3b Robertson AP. M, Burford N, McDonald R, Ferguson MJ. Angew. Chem. Int. Ed. 2014; 53: 3480
    • 4a Kremláček V, Hejda M, Rychagova E, Ketkov S, Jambor R, Růžička A, Dostál L. Eur. J. Inorg. Chem. 2021; 4030
    • 4b Hejda M, Jirásko R, Růžička A, Jambor R, Dostál L. Organometallics 2020; 39: 4320
    • 4c Vránová I, Dušková T, Erben M, Jambor R, Růžička A, Dostál L. J. Organomet. Chem. 2018; 863: 15
    • 4d Vránová I, Alonso M, Jambor R, Růžička A, Erben M, Dostál L. Chem. Eur. J. 2016; 22: 7376
    • 4e Vránová I, Alonso M, Lo R, Sedlák R, Jambor R, Růžička A, De Proft F, Hobza P, Dostál L. Chem. Eur. J. 2015; 21: 16917
    • 4f Vránová I, Jambor R, Růžička A, Jirásko R, Dostál L. Organometallics 2015; 34: 534
    • 4g Urbanová I, Jambor R, Růžička A, Jirásko R, Dostál L. Dalton Trans. 2014; 43: 505
    • 4h Dostál L, Novák P, Jambor R, Růžička A, Císařová I, Jirásko R, Holeček J. Organometallics 2007; 26: 2911
    • 5a Ramler J, Fantuzzi F, Geist F, Hanft A, Braunschweig H, Engels B, Lichtenberg C. Angew. Chem. Int. Ed. 2021; 60: 24388
    • 5b Lichtenberg C. Chem. Commun. 2021; 57: 4483
    • 5c Ramler J, Wüst L, Rempel A, Wolz L, Lichtenberg C. Organometallics 2021; 40: 832
    • 5d Hanft A, Radacki K, Lichtenberg C. Chem. Eur. J. 2021; 27: 6104
    • 5e Oberdorf K, Grenzer P, Wieprecht N, Ramler J, Hanft A, Rempel A, Stoy A, Radacki K, Lichtenberg C. Inorg. Chem. 2021; 60: 19086
    • 5f Mukhopadhyay DP, Schleier D, Wirsing S, Ramler J, Kaiser D, Reusch E, Hemberger P, Preitschopf T, Krummenacher I, Engels B, Fischer I, Lichtenberg C. Chem. Sci. 2020; 11: 7562
    • 5g Ramler J, Krummenacher I, Lichtenberg C. Angew. Chem. Int. Ed. 2019; 58: 12924
    • 7a Planas O, Wang F, Leutzsch M, Cornella J. Science 2020; 367: 313
    • 7b Pang Y, Leutzsch M, Nöthling N, Katzenburg F, Cornella J. J. Am. Chem. Soc. 2021; 143: 12487
    • 7c Planas O, Peciukenas V, Cornella J. J. Am. Chem. Soc. 2020; 142: 11382
    • 9a Petiot P, Dansereau J, Gagnon A. RSC Adv. 2014; 4: 22255
    • 9b Gagnon A, St-Onge M, Little K, Duplessis M, Barabé F. J. Am. Chem. Soc. 2007; 129: 44
    • 10a Ahmad T, Dansereau J, Hébert M, Grand-Maître C, Larivée A, Siddiqui A, Gagnon A. Tetrahedron Lett. 2016; 57: 4284
    • 10b Petiot P, Dansereau J, Hébert M, Khene I, Ahmad T, Samaali S, Leroy M, Pinsonneault F, Legault CY, Gagnon A. Org. Biomol. Chem. 2015; 13: 1322
    • 10c Crifar C, Petiot P, Ahmad T, Gagnon A. Chem. Eur. J. 2014; 20: 2755
  • 11 Benoit E, Bueno B, Choinière C, Gagnon A. J. Organomet. Chem. 2019; 893: 72
    • 12a Sawyer TK. Renaissance in Peptide Drug Discovery: The Third Wave. In Peptide-Based Drug Discovery and New Therapeutics. The Royal Society of Chemistry; London: 2017: 1-34
    • 12b Lee AC.-L, Harris JL, Khanna KK, Hong J.-H. Int. J. Mol. Sci. 2019; 20: 2383
    • 12c Ding Y, Ting JP, Liu J, Al-Azzam S, Pandya P, Afshar S. Amino Acids 2020; 52: 1207
    • 12d Blaskovich MA. T. J. Med. Chem. 2016; 59: 10807
    • 12e Goldflam M, Ullman CG. Front. Chem. 2015; 3: 69
    • 12f Kaspar AA, Reichert JM. Drug Discovery Today 2013; 18: 807
    • 12g Avan I, Hall CD, Katritzky AR. Chem. Soc. Rev. 2014; 43: 3575
    • 13a Zhang C, Vinogradova EV, Spokoyny AM, Buchwald SL, Pentelute BL. Angew. Chem. Int. Ed. 2019; 58: 4810
    • 13b Ohata J, Martin SC, Ball ZT. Angew. Chem. Int. Ed. 2019; 58: 6176
    • 13c Malins LR. Aust. J. Chem. 2016; 69: 1360
    • 13d Miller MK, Ball ZT. Isr. J. Chem. 2021; 61: 387
    • 13e Noisier AF. M, Brimble MA. Chem. Rev. 2014; 114: 8775
    • 13f Sengupta S, Mehta G. Tetrahedron Lett. 2017; 58: 1357
    • 13g deGruyter JN, Malins LR, Baran PS. Biochemistry 2017; 56: 3863
  • 14 Le Roch A, Chan H.-C, Gagnon A. Eur. J. Org. Chem. 2020; 5815
  • 15 Le Roch A, Hébert M, Gagnon A. Eur. J. Org. Chem. 2020; 5363
  • 16 Chan H.-C, Bueno B, Le Roch A, Gagnon A. Chem. Eur. J. 2021; 27: 13330
    • 17a Hanaya K, Miller MK, Ball ZT. Org. Lett. 2019; 21: 2445
    • 17b Ohata J, Minus MB, Abernathy ME, Ball ZT. J. Am. Chem. Soc. 2016; 138: 7472
    • 18a Maiti BK, Govil N, Kundu T, Moura JJ. G. iScience 2020; 23: 101792
    • 18b Jin Y, Lewis MA, Gokhale NH, Long EC, Cowan JA. J. Am. Chem. Soc. 2007; 129: 8353
    • 18c Donaldson LW, Skrynnikov NR, Choy W.-Y, Muhandiram DR, Sarkar B, Forman-Kay JD, Kay LE. J. Am. Chem. Soc. 2001; 123: 9843
    • 19a Ohata J, Ball ZT. Chem. Commun. 2017; 53: 1622
    • 19b Miller MK, Wang H, Hanaya K, Zhang O, Berlaga A, Ball ZT. Chem. Sci. 2020; 11: 10501
  • 20 Hébert M, Petiot P, Benoit E, Dansereau J, Ahmad T, Le Roch A, Ottenwaelder X, Gagnon A. J. Org. Chem. 2016; 81: 5401
  • 21 Koshizuka M, Makino K, Shimada N. Org. Lett. 2020; 22: 8658