Synlett 2022; 33(17): 1681-1687
DOI: 10.1055/a-1854-2131
synpacts

A Perspective on the Force-Induced Heterolytic Bond Cleavage in Triarylmethane Mechanophores

James R. Hemmer
,
The authors are thankful to the Adolphe Merkle Foundation and the Swiss National Science Foundation (SNSF) (20020_172619) for financial support.


Abstract

Triarylmethane derivatives and their corresponding trityl carbocations are among the oldest chemical species synthesized and studied by chemists. The carbocationic platforms are particularly interesting due to their stability, high extinction coefficient, and tunable absorption of light in the visible spectrum, which can be achieved through structural modifications. These stable cations are traditionally obtained through heterolytic cleavage of judiciously designed, parent triarylmethanes by exposure to acids or UV light (λ < 300 nm), and methods based on electrochemistry or radiolysis. Our group has recently discovered that trityl carbocations can be generated also via mechanical stimulation of solid polymer materials featuring triarylmethane units as covalent crosslinks. In this Synpacts contribution, we expand on our previous finding by discussing some intriguing research questions that we aim to tackle in the immediate future.

1 Introduction

2 The Development of Our First Triarylmethane Mechanophore

3 The Potential Reversibility of Triarylmethane Mechanophores

4 A General Molecular Platform for Force-Induced, Scissile, Homolytic and Heterolytic Bond Cleavage?

5 Conclusion



Publication History

Received: 26 April 2022

Accepted after revision: 17 May 2022

Accepted Manuscript online:
17 May 2022

Article published online:
15 June 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Chen Y, Mellot G, Van Luijk D, Creton C, Sijbesma RP. Chem. Soc. Rev. 2021; 50: 4100
  • 2 Deneke N, Rencheck ML, Davis CS. Soft Matter 2020; 16: 6230
  • 3 Binder WH. Polymer 2020; 202: 122639
  • 4 Beyer MK, Clausen-Schaumann H. Chem. Rev. 2005; 105: 2921
  • 5 Brantley JN, Wiggins KM, Bielawski CW. Polym. Int. 2013; 62: 2
  • 6 Li J, Nagamani C, Moore JS. Acc. Chem. Res. 2015; 48: 2181
  • 7 Abi GhanemM, Basu A, Behrou R, Boechler N, Boydston AJ, Craig SL, Lin Y, Lynde BE, Nelson A, Shen H, Storti DW. Nat. Rev. Mater. 2021; 6: 84
  • 8 Anderson L, Boulatov R. Adv. Phys. Org. Chem. 2018; 52: 87
  • 9 Polymer Mechanochemistry . Boulatov R. Springer International Publishing; Basel: 2015
  • 10 Willis-Fox N, Rognin E, Aljohani TA, Daly R. Chem 2018; 4: 2499
  • 11 Hu H, Ma Z, Jia X. Mater. Chem. Front. 2020; 4: 3115
  • 12 Groote R, Jakobs RT. M, Sijbesma RP. Polym. Chem. 2013; 4: 4846
  • 13 May PA, Moore JS. Chem. Soc. Rev. 2013; 42: 7497
  • 14 Caruso MM, Davis DA, Shen Q, Odom SA, Sottos NR, White SR, Moore JS. Chem. Rev. 2009; 109: 5755
  • 15 Akbulatov S, Boulatov R. ChemPhysChem 2017; 18: 1422
  • 16 Stratigaki M, Göstl R. ChemPlusChem 2020; 1095
  • 17 Davis DA, Hamilton A, Yang J, Cremar LD, Van Gough D, Potisek SL, Ong MT, Braun PV, Martínez TJ, White SR, Moore JS, Sottos NR. Nature 2009; 459: 68
  • 18 Berkowski KL, Potisek SL, Hickenboth CR, Moore JS. Macromolecules 2005; 38: 8975
  • 19 Gossweiler GR, Hewage GB, Soriano G, Wang Q, Welshofer GW, Zhao X, Craig SL. ACS Macro Lett. 2014; 3: 216
  • 20 Qian H, Purwanto NS, Ivanoff DG, Halmes AJ, Sottos NR, Moore JS. Chem 2021; 7: 1080
  • 21 Versaw BA, Mcfadden ME, Husic CC, Robb MJ. Chem. Sci. 2020; 11: 4525
  • 22 Wang Z, Ma Z, Wang Y, Xu Z, Luo Y, Wei Y, Jia X. Adv. Mater. 2015; 27: 6469
  • 23 Wang T, Zhang N, Dai J, Li Z, Bai W, Bai R. ACS Appl. Mater. Interfaces 2017; 9: 11874
  • 24 Imato K, Irie A, Kosuge T, Ohishi T, Nishihara M, Takahara A, Otsuka H. Angew. Chem. Int. Ed. 2015; 127: 6266
  • 25 Imato K, Kanehara T, Nojima S, Ohishi T, Higaki Y, Takahara A, Otsuka H. Chem. Commun. 2016; 52: 10482
  • 26 Imato K, Otsuka H. Polymer 2018; 137: 395
  • 27 Seshimo K, Sakai H, Watabe T, Aoki D, Sugita H, Mikami K, Mao Y, Ishigami A, Nishitsuji S, Kurose T, Ito H, Otsuka H. Angew. Chem. Int. Ed. 2021; 60: 8406
  • 28 Nixon R, De Bo G. Nat. Chem. 2020; 12: 826
  • 29 Nixon R, De Bo G. J. Am. Chem. Soc. 2021; 143: 3033
  • 30 Klein IM, Husic CC, Dávid D, Kovácskovács P, Choquette NJ, Robb MJ. J. Am. Chem. Soc. 2020; 142: 16364
  • 31 Cha Y, Zhu T, Sha Y, Lin H, Hwang J, Seraydarian M, Craig SL, Tang C. J. Am. Chem. Soc. 2021; 143: 11871
  • 32 Peterson GI, Boydston AJ. Macromol. Rapid Commun. 2014; 35: 1611
  • 33 Di Giannantonio M, Ayer MA, Verde-Sesto E, Lattuada M, Weder C, Fromm KM. Angew. Chem. Int. Ed. 2018; 57: 11445
  • 34 Sha Y, Zhang Y, Xu E, Wayne McAlister C, Zhu T, Craig SL, Tang C. Chem. Sci. 2019; 10: 4959
  • 35 Sha Y, Zhang Y, Xu E, Wang Z, Zhu T, Craig SL, Tang C. ACS Macro Lett. 2018; 7: 1174
  • 36 Diesendruck CE, Peterson GI, Kulik HJ, Kaitz JA, Mar BD, May PA, White SR, Martínez TJ, Boydston AJ, Moore JS. Nat. Chem. 2014; 6: 623
  • 37 Shiraki T, Diesendruck CE, Moore JS. Faraday Discuss. 2014; 170: 385
  • 38 Klukovich HM, Kean ZS, Black Ramirez AL, Lenhardt JM, Lin J, Hu X, Craig SL. J. Am. Chem. Soc. 2012; 134: 9577
  • 39 Zhang Y, Wang Z, Kouznetsova TB, Sha Y, Xu E, Shannahan L, Fermen-Coker M, Lin Y, Tang C, Craig SL. Nat. Chem. 2021; 13: 56
  • 40 Gessner T, Mayer U. Ullmann’s Encycl. Ind. Chem. 2012; 37: 425
  • 41 Muthyala R, Lan X. In Chemistry and Applications of Leuco Dyes . Muthyala R. Springer; Berlin/Heidelberg: 2005: 125
  • 42 Norris JF. Am. Chem. J. 1901; 25: 117
  • 43 Kehrmann F, Wentzel F. Ber. Dtsch. Chem. Ges. 1901; 34: 3815
  • 44 Photochromism: Molecules and Systems . Dürr H, Bouas-Laurent H. Elsevier; Amsterdam: 2003
  • 45 New Frontiers in Photochromism . Irie M, Yokoyama Y, Seki T. Springer; Tokyo: 2013
  • 46 Photochromism. Techniques of Chemistry, Vol. 3 . Brown GH. Wiley-Interscience; New York: 1971
  • 47 Das PK. Chem. Rev. 1993; 93: 119
  • 48 Grodkowski J, Stuglik Z, Wieczorek G. Radiat. Phys. Chem. 1992; 39: 375
  • 49 Bank S, Ehrlich CL, Zubieta JA. J. Org. Chem. 1978; 44: 1454
  • 50 Hemmer JR, Rader C, Wilts BD, Weder C, Berrocal JA. J. Am. Chem. Soc. 2021; 143: 18859
  • 51 Beyer MK. J. Chem. Phys. 2000; 112: 7307
  • 52 Paulusse JM. J, Sijbesma RP. Angew. Chem. Int. Ed. 2004; 43: 4460
  • 53 Traeger H, Kiebala DJ, Weder C, Schrettl S. Macromol. Rapid Commun. 2021; 42: 1
  • 54 Minegishi S, Mayr H. J. Am. Chem. Soc. 2003; 125: 286
  • 55 Horn M, Mayr H. Chem. Eur. J. 2010; 16: 7478
  • 56 Brauman JI, Archie WC. J. J. Am. Chem. Soc. 1968; 92: 5981
  • 57 McClelland RA, Banait N, Steenken S. J. Am. Chem. Soc. 1986; 108: 7023
  • 58 Mayr H, Ofial AR. J. Phys. Org. Chem. 2008; 21: 584
  • 59 Mayr H, Ammer J, Baidya M, Maji B, Nigst TA, Ofial AR, Singer T. J. Am. Chem. Soc. 2015; 137: 2580
  • 60 Bank S, Ehrlich CL, Myzur M, Zubieta JA. J. Org. Chem. 1981; 46: 1243
  • 61 Irie M. J. Am. Chem. Soc. 1983; 105: 2078
  • 62 Naredla RR, Klumpp DA. Chem. Rev. 2013; 113: 6905
  • 63 Reddy TJ, Iwama T, Halpern HJ, Rawal VH. J. Org. Chem. 2002; 67: 4635