Synthesis 2023; 55(01): 90-106
DOI: 10.1055/a-1873-6891
paper

Building Chemical Probes Based on the Natural Products YM-254890 and FR900359: Advances toward Scalability

Matthew R. Medcalf
a   Department of Chemistry, Washington University, St. Louis, MO, USA
,
Ruby L. Krueger
a   Department of Chemistry, Washington University, St. Louis, MO, USA
,
Zach T. Medcalf
a   Department of Chemistry, Washington University, St. Louis, MO, USA
,
Peter A. Rosston
a   Department of Chemistry, Washington University, St. Louis, MO, USA
,
Yu Zhu
a   Department of Chemistry, Washington University, St. Louis, MO, USA
,
Kevin M. Kaltenbronn
b   Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA
,
Kendall J. Blumer
b   Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA
,
Kevin D. Moeller
a   Department of Chemistry, Washington University, St. Louis, MO, USA
› Institutsangaben
We thank the National Institutes of Health (2R01GM124093) for their generous support of our work.


Abstract

The biological activity of natural products YM-254890 (YM) and FR900359 (FR) has led to significant interest in both their synthesis and the construction of more simplified analogs. While the simplified analogs lose much of the potency of the natural products, they are of interest in their own right, and their synthesis has revealed synthetic barriers to the family of molecules that need to be addressed if a scalable synthesis of YM and FR analogs is to be constructed. In the work described here, a synthetic route to simplified analogs of YM is examined and strategies for circumventing some of the challenges inherent to constructing the molecules are forwarded.

Supporting Information



Publikationsverlauf

Eingereicht: 25. April 2022

Angenommen: 10. Juni 2022

Accepted Manuscript online:
10. Juni 2022

Artikel online veröffentlicht:
06. Oktober 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Taniguchi M, Nagai K, Arao N, Kawasaki T, Saito T, Moritani Y, Takasaki J, Hayashi K, Fujita S, Suzuki K, Tsukamoto S. J. Antibiot. (Tokyo) 2003; 56: 358
  • 2 Kaur H, Harris PW, Little PJ, Brimble MA. Org. Lett. 2015; 17: 492
  • 3 Flock T, Ravarani CN, Sun D, Venkatakrishnan AJ, Kayikci M, Tate CG, Veprintsev DB, Babu MM. Nature 2015; 524: 173
  • 4 Xiong X.-F, Zhang H, Underwood CR, Harpsøe K, Gardella TJ, Wöldike MF, Mannstadt M, Gloriam DE, Bräuner-Osborne H, Strømgaard K. Nat. Chem. 2016; 8: 1035
  • 5 Zhang H, Nielsen AL, Boesgaard MW, Harpsøe K, Daly NL, Xiong X.-F, Underwood CR, Haugaard-Kedström LM, Bräuner-Osborne H, Gloriam DE, Strømgaard K. Eur. J. Med. Chem. 2018; 156: 847
  • 6 Zhang H, Xiong X.-F, Boesgaard MW, Underwood CR, Bräuner-Osborne H, Strømgaard K. ChemMedChem 2017; 11: 830
  • 7 Reher R, Kühl T, Annala S, Benkel T, Kaufmann D, Nubbemeyer B, Odhiambo JP, Heimer P, Bäuml CA, Kehraus S, Crüsemann M, Kostenis E, Tietze D, König GM, Imhof D. ChemMedChem 2018; 13: 1634
  • 8 Taniguchi M, Suzumara K, Nagai K, Kawasaki T, Takasaki J, Sekiguchi M, Moritani Y, Saito T, Hayashi K, Fujita S, Tsukamoto S, Suzuki K. Bioorg. Med. Chem. 2004; 12: 3125
  • 9 Fujioka M, Koda S, Morimoto Y, Biemann K. J. Org. Chem. 1988; 53: 2820
  • 10 Kawasaki T, Taniguchi M, Moritani Y, Hayashi K, Saito T, Takasaki J, Nagai K, Inagaki O, Shikama H. Thromb. Haemostasis 2003; 90: 406
  • 11 Kawasaki T, Taniguchi M, Moritani Y, Uemura T, Shigenaga T, Takamatsu H, Hayashi K, Takasaki J, Saito T, Nagai K. Thromb. Haemostasis 2005; 94: 184
  • 12 Zaima K, Deguchi J, Matsuno Y, Kaneda T, Hirasawa Y, Morita H. J. Nat. Med. 2013; 67: 196
  • 13 Schrage R, Schmitz AL, Gaffal E, Annala S, Kehraus S, Wenzel D, Bullesbach KM, Bald T, Inoue A, Shinjo Y, Galandrin S, Shridhar N, Hesse M, Grundmann M, Merten N, Charpentier TH, Martz M, Butcher AJ, Slodczyk T, Armando S, Effern M, Namkung Y, Jenkins L, Horn V, Stossel A, Dargatz H, Tietze D, Imhof D, Gales C, Drewke C, Muller CE, Holzel M, Milligan G, Tobin AB, Gomeza J, Dohlman HG, Sondek J, Harden TK, Bouvier M, Laporte SA, Aoki J, Fleischmann BK, Mohr K, Konig GM, Tuting T, Kostenis E. Nat. Commun. 2015; 6: 10156
  • 14 Nishimura A, Kitano K, Takasaki J, Taniguchi M, Mizuno N, Tago K, Hakoshima T, Itoh H. Proc. Natl. Acad. Sci. USA 2010; 107: 13666
  • 15 Onken MD, Makepeace CM, Kaltenbronn KM, Kanai SM, Todd TD, Wang S, Broekelmann TJ, Rao PK, Cooper JA, Blumer K. Sci. Signaling 2018; 11: eaao6852
  • 16 Jie L, Owens EA, Rensing DT, Moeller KD, Plante LA, Meucci O, Osei-Owusu P. Physiol. Rep. 2016; 4: e12692
  • 17 Meleka MM, Edwards AJ, Xia J, Dahlen SA, Mohanty E, Medcalf M, Aggarway S, Moeller KD, Mortensen OV, Osei-Owusu P. Pharmacol. Res. 2019; 141: 264
  • 18 Hermes C, Richarz R, Wirtz DA, Patt J, Hanke W, Kehraus S, Voβ JH, Küppers J, Ohbayashi T, Namasivayam V, Alenfelder J, Inoue A, Mergaert P, Gütschow M, Müller CE, Kostenis E, König GM, Crüsemann M. Nat. Commun. 2021; 12: 144
  • 19 Pistorius D, Buntin K, Weber E, Richard E, Bouquet C, Wollbrett S, Regenass H, Peón V, Böhm M, Kessler R, Gempeler T, Haberkorn A, Wimmer L, Lanshoeft C, Davis J, Hainz D, D’Alessio A, Manchado E, Petersen F. Chem. Eur. J. 2021; e202103888
  • 20 Rensing DT, Uppal S, Blumer KJ, Moeller KD. Org. Lett. 2015; 17: 2270
  • 21 Rensing DT, Moeller KD. Strategies Tactics Org. Synth. 2016; 12: 215
  • 22 Ojima I, Habus I, Zhao M, Zucco M, Park YH, Sun CM, Brigaud T. Tetrahedron 1992; 48: 6985
  • 23 Kanai SM, Edwards AJ, Rurik JG, Osei-Owusu P, Blumer KJ. P. J. Biol. Chem. 2017; 292: 19266