CC BY-NC-ND 4.0 · Organic Materials 2022; 4(03): 53-60
DOI: 10.1055/a-1881-0385
Supramolecular Chemistry
Short Review

Dynamically Self-Assembled Supramolecular Probes in Liposomes

a   Center for Cellular Nanoanalytics (CellNanOs) and Department of Biology and Chemistry, Universität Osnabrück, Barbarastraße 7, 49069 Osnabrück, Germany.
› Author Affiliations


Abstract

Liposomes are artificial vesicles, in which an aqueous inner compartment is separated from its environment by a phospholipid membrane. They have been extensively studied as cell membrane models and offer the possibility to confine molecules and chemical reactions to a small sub-micrometer-sized volume. This short review provides an overview of liposome-encapsulated, dynamically self-assembled, supramolecular structures, in which the assembly and disassembly of the supramolecular structures can be followed by optical spectroscopic methods. This includes self-quenched fluorescent dyes and dye/quencher pairs, helical stacks of guanosine nucleotides, dynamic covalent boronate esters, and supramolecular host–guest complexes. The resulting liposomes are typically used to study membrane transport processes, but the results summarized herein also serve as a potential blueprint for studying dynamic self-assembly in confined spaces by optical spectroscopic methods.

Table of content:

1 Introduction

2 Probes Based on Fluorescence Quenching

3 Chirogenic G-Quartet Probes

4 Chromogenic Probes Using Dynamic Covalent Bonds

5 Self-Assembled Host–Dye Reporter Pairs

6 Conclusions and Outlook



Publication History

Received: 30 May 2022

Accepted after revision: 21 June 2022

Accepted Manuscript online:
21 June 2022

Article published online:
27 July 2022

© 2022. The authors. This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Alberts B, Johnson A, Lewis J, Morgan D, Raff M, Roberts K, Walter P. Molecular Biology of the Cell. 6th ed.. New York: Garland Science; 2014
  • 2 Pattni BS, Chupin VV, Torchilin VP. Chem. Rev. 2015; 115: 10938
  • 3 Pick H, Alves AC, Vogel H. Chem. Rev. 2018; 118: 8598
    • 4a Lehn J-M. Supramolecular Chemistry: Concepts and Perspectives. VCH Verlagsgesellschaft mbH; Weinheim: 1995
    • 4b Gale PA, Davis JT, Quesada R. Chem. Soc. Rev. 2017; 46: 2497
    • 4c Matile S, Vargas Jentzsch A, Montenegro J, Fin A. Chem. Soc. Rev. 2011; 40: 2453
    • 4d Vargas Jentzsch A, Hennig A, Mareda J, Matile S. Acc. Chem. Res. 2013; 46: 2791
    • 4e Si W, Xin P, Li Z-T, Hou J-L. Acc. Chem. Res. 2015; 48: 1612
    • 4f Zheng S-P, Huang L-B, Sun Z, Barboiu M. Angew. Chem. Int. Ed. 2021; 60: 566
    • 5a Ma M, Bong D. Acc. Chem. Res. 2013; 46: 2988
    • 5b Webb SJ. Acc. Chem. Res. 2013; 46: 2878
    • 5c Paleos CM, Pantos A. Acc. Chem. Res. 2014; 47: 1475
    • 5d Barba-Bon A, Nilam M, Hennig A. ChemBioChem 2020; 21: 886
    • 5e Bickerton LE, Johnson TG, Kerckhoffs A, Langton MJ. Chem. Sci. 2021; 12: 11252
    • 5f Langton MJ. Nat. Rev. Chem. 2021; 5: 46
  • 6 Küchler A, Yoshimoto M, Luginbühl S, Mavelli F, Walde P. Nat. Nanotechnol. 2016; 11: 409
  • 7 Palmer AF, Wingert P, Nickels J. Biophys. J. 2003; 85: 1233
  • 8 Kurokawa C, Fujiwara K, Morita M, Kawamata I, Kawagishi Y, Sakai A, Murayama Y, Nomura S-iM, Murata S, Takinoue M, Yanagisawa M. Proc. Natl. Acad. Sci. U.S.A. 2017; 114: 7228
  • 9 Lee H-K, Soukasene S, Jiang H, Zhang S, Feng W, Stupp SI. Soft Matter 2008; 4: 962
  • 10 Abraham SA, Edwards K, Karlsson G, MacIntosh S, Mayer LD, McKenzie C, Bally MB. Biochim. Biophys. Acta, Biomembr. 2002; 1565: 41
  • 11 Matile S, Sakai N, Hennig A. In Gale PA, Steed JW. Supramolecular Chemistry: From Molecules to Nanomaterials. 2. Chichester: Wiley; 2012: 473
    • 12a Weinstein JN, Yoshikami S, Henkart P, Blumenthal R, Hagins WA. Science 1977; 195: 489
    • 12b Dawson RE, Hennig A, Weimann DP, Emery D, Ravikumar V, Montenegro J, Takeuchi T, Gabutti S, Mayor M, Mareda J, Schalley CA, Matile S. Nat. Chem. 2010; 2: 533
    • 12c Hennig A, Gabriel GJ, Tew GN, Matile S. J. Am. Chem. Soc. 2008; 130: 10338
    • 12d Peng S, Barba-Bon A, Pan Y-C, Nau WM, Guo D-S, Hennig A. Angew. Chem. Int. Ed. 2017; 56: 15742
  • 13 Allen TM, Cleland LG. Biochim. Biophys. Acta, Biomembr. 1980; 597: 418
    • 14a Edwards KA, Curtis KL, Sailor JL, Baeumner AJ. Anal. Bioanal. Chem. 2008; 391: 1689
    • 14b Nasr G, Greige-Gerges H, Elaissari A, Khreich N. Int. J. Pharm. 2020; 580: 119198
    • 15a Plant AL. Photochem. Photobiol. 1986; 44: 453
    • 15b Chen RF, Knutson JR. Anal. Biochem. 1988; 172: 61
    • 15c Hennig A, Hatami S, Spieles M, Resch-Genger U. Photochem. Photobiol. Sci. 2013; 12: 729
    • 16a Klonis N, Sawyer WH. J. Fluorescence 1996; 6: 147
    • 16b Aschi M, DʼArchivio AA, Fontana A, Formiglio A. J. Org. Chem. 2008; 73: 3411
    • 17a Smolarsky M, Teitelbaum D, Sela M, Gitler C. J. Immunol. Methods 1977; 15: 255
    • 17b Ellens H, Bentz J, Szoka FC. Biochemistry 1984; 23: 1532
    • 17c Ladokhin AS, Wimley WC, White SH. Biophys. J. 1995; 69: 1964
    • 18a Hennig A, Fischer L, Guichard G, Matile S. J. Am. Chem. Soc. 2009; 131: 16889
    • 18b Takeuchi T, Montenegro J, Hennig A, Matile S. Chem. Sci. 2011; 2: 303
  • 19 Guha S, Ghimire J, Wu E, Wimley WC. Chem. Rev. 2019; 119: 6040
    • 20a Ostolaza H, Bartolomé B, de Zárate IO, de la Cruz F, Goñi FM. Biochim. Biophys. Acta, Biomembr. 1993; 1147: 81
    • 20b Ladokhin AS, Selsted ME, White SH. Biophys. J. 1997; 72: 1762
    • 20c Hristova K, Selsted ME, White SH. J. Biol. Chem. 1997; 272: 24224
    • 21a Braun S, Pokorná Š, Šachl R, Hof M, Heerklotz H, Hoernke M. ACS Nano 2018; 12: 813
    • 21b Wiedman G, Fuselier T, He J, Searson PC, Hristova K, Wimley WC. J. Am. Chem. Soc. 2014; 136: 4724
  • 22 Sakai N, Matile S. Chirality 2003; 15: 766
  • 23 Hennig A, Matile S. Chirality 2008; 20: 932
    • 24a Pinnavaia TJ, Marshall CL, Mettler CM, Fisk CL, Miles HT, Becker ED. J. Am. Chem. Soc. 1978; 100: 3625
    • 24b Bouhoutsos-Brown E, Marshall CL, Pinnavaia TJ. J. Am. Chem. Soc. 1982; 104: 6576
  • 25 Bonazzi S, Capobianco M, De Morais MM, Garbesi A, Gottarelli G, Mariani P, Ponzi Bossi MG, Spada GP, Tondelli L. J. Am. Chem. Soc. 1991; 113: 5809
  • 26 Lang F, Busch GL, Ritter M, Völkl H, Waldegger S, Gulbins E, Häussinger D. Physiol. Rev. 1998; 78: 247
    • 27a Licsandru E, Kocsis I, Shen Y-x, Murail S, Legrand Y-M, van der Lee A, Tsai D, Baaden M, Kumar M, Barboiu M. J. Am. Chem. Soc. 2016; 138: 5403
    • 27b Wachlmayr J, Hannesschlaeger C, Speletz A, Barta T, Eckerstorfer A, Siligan C, Horner A. Nanoscale Adv. 2022; 4: 58
    • 28a Naka K, Sadownik A, Regen SL. J. Am. Chem. Soc. 1993; 115: 2278
    • 28b Bandyopadhyay P, Bandyopadhyay P, Regen SL. J. Am. Chem. Soc. 2002; 124: 11254
    • 29a Jin Y, Yu C, Denman RJ, Zhang W. Chem. Soc. Rev. 2013; 42: 6634
    • 29b Rowan SJ, Cantrill SJ, Cousins GRL, Sanders JKM, Stoddart JF. Angew. Chem. Int. Ed. 2002; 41: 898
  • 30 Hennig A, Hagihara S, Matile S. Chirality 2009; 21: 826
    • 31a Springsteen G, Wang B. Chem. Commun. 2001; 1608
    • 31b Lee JW, Lee J-S, Chang Y-T. Angew. Chem. Int. Ed. 2006; 45: 6485
    • 31c Edwards NY, Sager TW, McDevitt JT, Anslyn EV. J. Am. Chem. Soc. 2007; 129: 13575
    • 31d Valenzuela SA, Crory HSN, Yao C-Y, Howard JR, Saucedo G, de Silva AP, Anslyn EV. Angew. Chem. Int. Ed. 2021; 60: 13819
    • 32a Westmark PR, Gardiner SJ, Smith BD. J. Am. Chem. Soc. 1996; 118: 11093
    • 32b Westmark PR, Smith BD. J. Am. Chem. Soc. 1994; 116: 9343
  • 33 Zhang X, Alves DS, Lou J, Hill SD, Barrera FN, Best MD. Chem. Commun. 2018; 54: 6169
  • 34 Butterfield SM, Hennig A, Matile S. Org. Biomol. Chem. 2009; 7: 1784
    • 35a Dsouza RN, Pischel U, Nau WM. Chem. Rev. 2011; 111: 7941
    • 35b Ghale G, Nau WM. Acc. Chem. Res. 2014; 47: 2150
    • 35c Alnajjar MA, Bartelmeß J, Hein R, Ashokkumar P, Nilam M, Nau WM, Rurack K, Hennig A. Beilstein J. Org. Chem. 2018; 14: 1961
  • 36 Zhang S, Assaf KI, Huang C, Hennig A, Nau WM. Chem. Commun. 2019; 55: 671
    • 37a Hennig A, Bakirci H, Nau WM. Nat. Methods 2007; 4: 629
    • 37b Nau WM, Ghale G, Hennig A, Bakirci H, Bailey DM. J. Am. Chem. Soc. 2009; 131: 11558
    • 37c Dsouza RN, Hennig A, Nau WM. Chem. Eur. J. 2012; 18: 3444
    • 37d Nilam M, Gribbon P, Reinshagen J, Cordts K, Schwedhelm E, Nau WM, Hennig A. SLAS Discovery 2017; 22: 906
    • 37e Stahl A, Lazar AI, Muchemu VN, Nau WM, Ullrich MS, Hennig A. Anal. Bioanal. Chem. 2017; 409: 6485
    • 37f Liu Y-C, Peng S, Angelova L, Nau WM, Hennig A. ChemistryOpen 2019; 8: 1350
  • 38 Bailey DM, Hennig A, Uzunova VD, Nau WM. Chem. Eur. J. 2008; 14: 6069
  • 39 Liu Y-C, Nau WM, Hennig A. Chem. Commun. 2019; 55: 14123
    • 40a Hennig A, Hoffmann A, Borcherding H, Thiele T, Schedler U, Resch-Genger U. Chem. Commun. 2011; 47: 7842
    • 40b Hennig A, Borcherding H, Jaeger C, Hatami S, Würth C, Hoffmann A, Hoffmann K, Thiele T, Schedler U, Resch-Genger U. J. Am. Chem. Soc. 2012; 134: 8268
    • 40c Nilam M, Ahmed M, Alnajjar MA, Hennig A. Analyst 2019; 144: 579
  • 41 Wilschut J, Papahadjopoulos D. Nature 1979; 281: 690
  • 42 Grynkiewicz G, Poenie M, Tsien RY. J. Biol. Chem. 1985; 260: 3440
  • 43 Winschel CA, Kalidindi A, Zgani I, Magruder JL, Sidorov V. J. Am. Chem. Soc. 2005; 127: 14704
    • 44a Ghale G, Lanctôt AG, Kreissl HT, Jacob MH, Weingart H, Winterhalter M, Nau WM. Angew. Chem. Int. Ed. 2014; 53: 2762
    • 44b Pangeni S, Prajapati JD, Bafna J, Nilam M, Nau WM, Kleinekathöfer U, Winterhalter M. Angew. Chem. Int. Ed. 2021; 60: 8089
    • 44c Barba-Bon A, Pan Y-C, Biedermann F, Guo D-S, Nau WM, Hennig A. J. Am. Chem. Soc. 2019; 141: 20137
    • 44d Biedermann F, Ghale G, Hennig A, Nau WM. Commun. Biol. 2020; 3: 383
    • 44e Nilam M, Collin S, Karmacharya S, Hennig A, Nau WM. ACS Sens. 2021; 6: 175
    • 44f Nilam M, Karmacharya S, Nau WM, Hennig A. Angew. Chem. Int. Ed. 2022; in press DOI: 10.1002/anie.202207950.
  • 45 Sedgwick AC, Brewster JT, Wu T, Feng X, Bull SD, Qian X, Sessler JL, James TD, Anslyn EV, Sun X. Chem. Soc. Rev. 2021; 50: 9
  • 46 Gong B, Choi B-K, Kim J-Y, Shetty D, Ko YH, Selvapalam N, Lee NK, Kim K. J. Am. Chem. Soc. 2015; 137: 8908
    • 47a Lee A, Li M, Ko YH, Park S, Seo J, Park KM, Kim K. Chem. Commun. 2021; 57: 12179
    • 47b Li M, Lee A, Kim KL, Murray J, Shrinidhi A, Sung G, Park KM, Kim K. Angew. Chem. Int. Ed. 2018; 57: 2120
  • 48 Cao L, Šekutor M, Zavalij PY, Mlinarić-Majerski K, Glaser R, Isaacs L. Angew. Chem. Int. Ed. 2014; 53: 988
  • 49 Walter A, Siegel DP. Biochemistry 1993; 32: 3271
  • 50 Hein R, Uzundal CB, Hennig A. Org. Biomol. Chem. 2016; 14: 2182
  • 51 Valkenier H, López Mora N, Kros A, Davis AP. Angew. Chem. Int. Ed. 2015; 54: 2137