Synthesis 2022; 54(21): 4646-4660
DOI: 10.1055/a-1892-5473
short review

Recent Advances in Transition-Metal-Catalyzed Asymmetric Functionalization of Enamides

Yang Xi
,
Yifeng Chen
This work was supported by NSFC/China (22171079), Natural Science Foundation of Shanghai (21ZR1480400), Shanghai Rising-Star Program (20QA1402300), Shanghai Municipal Science and Technology Major Project (Grant No. 2018SHZDZX03), the Program of Introducing Talents of Discipline to Universities (B16017), the Fundamental Research Funds for the Central Universities (222201717003).


Abstract

Enamides, as prefunctionalized electron-rich heteroatom-substituted alkenes represent a powerful platform to synthesize useful nitrogen-containing natural products and bioactive molecules. This review discloses recent progress in the transition-metal-catalyzed enantioselective functionalization of enamides, including the Heck reaction, hydrofunctionalization, and difunctionalization, with a focus on the general scope, current limitations, stereochemical reaction control, and mechanistic aspects.

1 Introduction

2 Asymmetric Heck Reaction of Enamides

3 Asymmetric Hydrofunctionalization of Enamides

3.1 Nickel Catalysis

3.2 Copper Catalysis

3.3 Rhodium Catalysis

3.4 Iridium Catalysis

4 Asymmetric Difunctionalization of Enamides

4.1 Palladium Catalysis

4.2 Nickel Catalysis

4.3 Copper Catalysis

5 Summary and Outlook



Publication History

Received: 04 June 2022

Accepted after revision: 05 July 2022

Accepted Manuscript online:
05 July 2022

Article published online:
18 August 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Nugent TC. Chiral Amine Synthesis: Methods, Developments and Applications. Wiley-VCH; Weinheim: 2010
    • 1b Li W, Zhang X. Stereoselective Formation of Amines. In Topics in Current Chemistry, Vol. 343. Springer; Heidelberg: 2014
  • 2 Trowbridge A, Walton SM, Gaunt MJ. Chem. Rev. 2020; 120: 2613
    • 3a Xie J.-H, Zhu S.-F, Zhou Q.-L. Chem. Rev. 2011; 111: 1713
    • 3b Fujihara H, Nagai K, Tomioka K. J. Am. Chem. Soc. 2020; 142: 12055
    • 4a Nakafuku KM, Zhang Z, Wappes EA, Stateman LM, Chen AD, Nagib DA. Nat. Chem. 2020; 12: 697
    • 4b Davies HM. L, Manning JR. Nature 2008; 451: 417
  • 5 Verkade JM. M, van Hemert LJ. C, Quaedflieg PJ. L. M, Rutjes FP. J. T. Chem. Soc. Rev. 2008; 37: 29
    • 6a Liu RY, Buchwald SL. Acc. Chem. Res. 2020; 53: 1229
    • 6b Huang L, Arndt M, Gooßen K, Heydt H, Gooßen LJ. Chem. Rev. 2015; 115: 2596
  • 8 Xie J.-H, Zhu S.-F, Zhou Q.-LR. Chem. Soc. Rev. 2012; 41: 4126
    • 9a Molinaro C, Scott JP, Shevlin M, Wise C, Ménard A, Gibb A, Junker EM, Lieberman D. J. Am. Chem. Soc. 2015; 137: 999
    • 9b Li C, Wan F, Chen Y, Peng H, Tang W, Yu S, McWilliams JC, Mustakis J, Samp L, Maguire RJ. Angew. Chem. Int. Ed. 2019; 58: 13573
    • 9c Guan Y.-Q, Han Z, Li X, You C, Tan X, Lv H, Zhang X. Chem. Sci. 2019; 10: 252
    • 9d Fan D, Zhang J, Hu Y, Zhang Z, Gridnev ID, Zhang W. ACS Catal. 2020; 10: 3232
    • 10a Liu H, Dagousset G, Masson G, Retailleau P, Zhu J. J. Am. Chem. Soc. 2009; 131: 4598
    • 10b Jia Y.-X, Zhong J, Zhu S.-F, Zhang C.-M, Zhou Q.-L. Angew. Chem. Int. Ed. 2007; 46: 5565
    • 10c Dagousset G, Zhu J, Masson G. J. Am. Chem. Soc. 2011; 133: 14804
    • 10d Honjo T, Phipps RJ, Rauniyar V, Toste FD. Angew. Chem. Int. Ed. 2012; 51: 9684
    • 10e Alix A, Lalli C, Retailleau P, Masson G. J. Am. Chem. Soc. 2012; 134: 10389
    • 10f Phipps RJ, Hiramatsu K, Toste FD. J. Am. Chem. Soc. 2012; 134: 8376
    • 11a Shibasaki M, Vogl EM, Ohshima T. Adv. Synth. Catal. 2004; 346: 1533
    • 11b McCartney D, Guiry PJ. Chem. Soc. Rev. 2011; 40: 5122
    • 11c Bonfield HE, Valette D, Lindsay DM, Reid M. Chem. Eur. J. 2021; 27: 158
    • 12a Nukui S, Sodeoka M, Shibasaki M. Tetrahedron Lett. 1993; 34: 4965
    • 12b Sato Y, Nukui S, Sodeoka M, Shibasaki M. Tetrahedron 1994; 50: 371
  • 13 Nukui S, Sodeoka M, Sasai H, Shibasaki M. J. Org. Chem. 1995; 60: 398
  • 14 Ripa L, Hallberg A. J. Org. Chem. 1997; 62: 595
  • 15 Ozawa F, Hayashi T. J. Organomet. Chem. 1992; 428: 267
  • 16 Ozawa F, Kobatake Y, Hayashi T. Tetrahedron Lett. 1993; 34: 2505
  • 17 Tietze LF, Thede K. Synlett 2000; 1470
  • 18 Hu J, Lu Y, Li Y, Zhou JS. Chem. Commun. 2013; 49: 9425
  • 19 Yang Z, Zhou JS. J. Am. Chem. Soc. 2012; 134: 11833
  • 20 Wu C, Zhou JS. J. Am. Chem. Soc. 2014; 136: 650
  • 21 Yuan Q, Sigman MS. Chem. Eur. J. 2019; 25: 10823
  • 22 Yuan Q, Sigman MS. J. Am. Chem. Soc. 2018; 140: 6527
  • 23 Jiang ZZ, Jiang YJ, Du J, Chen D, Ding CH, Xu B, Hou X. Synthesis 2019; 51: 3269
  • 24 Huang X, Teng S, Chi YR, Xu W, Pu M, Wu Y, Zhou JS. Angew. Chem. Int. Ed. 2021; 60: 2828
    • 25a Carroll A.-M, O’Sullivan TP, Guiry PJ. Adv. Synth. Catal. 2005; 347: 609
    • 25b Coombs JR, Morken JP. Angew. Chem. Int. Ed. 2016; 55: 2636
    • 25c Beller M, Seayad J, Tillack A, Jiao H. Angew. Chem. Int. Ed. 2004; 43: 3368
    • 25d Chen J, Lu Z. Org. Chem. Front. 2018; 5: 260
    • 25e Chen J, Guo J, Lu Z. Chin. J. Chem. 2018; 36: 1075
  • 26 Cuesta-Galisteo S, Schörgenhumer J, Wei X, Merino E, Nevado C. Angew. Chem. Int. Ed. 2021; 60: 1605
  • 27 He Y, Song H, Chen J, Zhu S. Nat. Commun. 2021; 12: 638
  • 28 Qian D, Bera S, Hu X. J. Am. Chem. Soc. 2021; 143: 1959
  • 29 Wang J.-W, Li Y, Nie W, Chang Z, Yu Z.-A, Zhao Y.-F, Lu X, Fu Y. Nat. Commun. 2021; 12: 1313
  • 30 Wang S, Zhang T.-Y, Zhang J.-X, Meng H, Chen B.-H, Shu W. Nat. Commun. 2021; 12: 2771
    • 31a Wang Z, Yin H, Fu GC. Nature 2018; 563: 379
    • 31b Zhou F, Zhang Y, Xu X, Zhu S. Angew. Chem. Int. Ed. 2019; 58: 1754
    • 31c He S.-J, Wang J.-W, Li Y, Xu Z.-Y, Wang X.-X, Lu X, Fu Y. J. Am. Chem. Soc. 2020; 142: 214

      For selected examples, see:
    • 32a Noh D, Chea H, Ju J, Yun J. Angew. Chem. Int. Ed. 2009; 48: 6062
    • 32b Lee Y, Hoveyda AH. J. Am. Chem. Soc. 2009; 131: 3160
    • 32c Liu Y, Zhang W. Chin. J. Org. Chem. 2016; 36: 2249
  • 33 Chen L, Zou X, Zhao H, Xu S. Org. Lett. 2017; 19: 3676
  • 34 López A, Clark TB, Parra A, Tortosa M. Org. Lett. 2017; 19: 6272
  • 35 Zhang Y, Tong M, Gao Q, Zhang P, Xu S. Tetrahedron Lett. 2019; 60: 1210
  • 36 Hu N, Zhao G, Zhang Y, Liu X, Li G, Tang W. J. Am. Chem. Soc. 2015; 137: 6746
  • 37 Bai X.-Y, Zhao W, Sun X, Li B.-J. J. Am. Chem. Soc. 2019; 141: 19870
  • 38 Bai X.-Y, Zhang W.-W, Li Q, Li B.-J. J. Am. Chem. Soc. 2018; 140: 506
  • 39 Bai X.-Y, Wang Z.-X, Li B.-J. Angew. Chem. Int. Ed. 2016; 55: 9007
  • 40 Yu Z, Meng L, Lin Z. Organometallics 2019; 38: 2998
  • 41 Zhang W.-W, Zhang S.-L, Li B.-J. Angew. Chem. Int. Ed. 2020; 59: 6874
  • 42 Zhang S.-L, Zhang W.-W, Li B.-J. J. Am. Chem. Soc. 2021; 143: 9639
  • 43 Hu J, Hirao H, Li Y, Zhou JS. Angew. Chem. Int. Ed. 2013; 52: 8676
  • 44 Teng S, Jiao Z, Chi YR, Zhou JS. Angew. Chem. Int. Ed. 2020; 59: 2246
  • 45 Teng S, Chi YR, Zhou JS. Angew. Chem. Int. Ed. 2021; 60: 4491
  • 46 Xi Y, Wang C, Zhang Q, Qu J, Chen Y. Angew. Chem. Int. Ed. 2021; 60: 2699
  • 47 Xi Y, Huang W, Wang C, Ding H, Xia T, Wu L, Fang K, Qu J, Chen Y. J. Am. Chem. Soc. 2022; 144: 8389
  • 48 Huang W, Shrestha M, Wang C, Fang K, Teng Y, Qu J, Chen Y. Org. Chem. Front. 2021; 8: 4106
  • 49 Fang K, Huang W, Shan C, Qu J, Chen Y. Org. Lett. 2021; 23: 5523
  • 50 Wei X, Shu W, García-Domínguez A, Merino E, Nevado C. J. Am. Chem. Soc. 2020; 142: 13515
  • 51 Zhang G, Zhou S, Fu L, Chen P, Li Y, Zou J, Liu G. Angew. Chem. Int. Ed. 2020; 59: 20439
  • 52 Zhou L, Yan W.-G, Sun X.-L, Wang L, Tang Y. Angew. Chem. Int. Ed. 2020; 59: 18964