Synthesis 2023; 55(12): 1940-1948
DOI: 10.1055/a-2012-5187
paper
Special Issue Honoring Prof. Guoqiang Lin's Contributions to Organic Chemistry

Aza-Wacker Cyclization Toward the Bridged Core of FR901483

Defeng Shen
a   CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P. R. of China
,
Changmin Xie
a   CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P. R. of China
,
Zhuwei Ruan
a   CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P. R. of China
,
Chen Yang
a   CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P. R. of China
,
Sha-Hua Huang
b   School of Environmental and Chemical Engineering, Shanghai Institute of Technology, Shanghai 201418, P. R. of China
,
Lili Zhu
a   CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P. R. of China
,
Ran Hong
a   CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P. R. of China
› Institutsangaben
Financial support from the National Natural Science Foundation of China (22171281 and 22271194) and the Science and Technology Commission of Shanghai Municipality (20XD1404700) is greatly appreciated.


Abstract

A nine-step synthetic route to access the tricyclic core of FR901483 is reported, featuring a key aza-Wacker cyclization step to construct an α-tertiary amine (ATA) in the bridged structure. The aza-Wacker protocol can tolerate both exocyclic and endocyclic double bonds, providing viable access to various bridged bicyclic rings bearing an ATA (e.g., 6-azabicyclo[3.2.1]octane, 7-azabicyclo[3.3.1]nonane, and 7-azabicyclo[4.2.1]nonane) in good to excellent yields. The synthetic studies presented herein enable structural derivatization of FR901483 to further exploit its compelling biological activities.

Supporting Information



Publikationsverlauf

Eingereicht: 24. Dezember 2022

Angenommen nach Revision: 13. Januar 2023

Accepted Manuscript online:
13. Januar 2023

Artikel online veröffentlicht:
06. Februar 2023

© 2023. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Hager A, Vrielink N, Hager D, Lefranc J, Trauner D. Nat. Prod. Rep. 2016; 33: 491
  • 2 Alvandi F, Kwitkowski VE, Ko C.-W, Rothmann MD, Ricci S, Saber H, Ghosh D, Brown J, Pfeiler E, Chikhale E, Grillo J, Bullock J, Kane R, Kaminskas E, Farrell AT, Pazdur R. Oncologist 2014; 19: 94

    • For reviews on the synthesis of cephalotaxine, see:
    • 3a Jeon H. Asian J. Org. Chem. 2021; 10: 3052
    • 3b Pérard-Viret J, Quteishat L, Alsalim R, Royer J, Dumas F. Cephalotaxus Alkaloids. In The Alkaloids: Chemistry and Biology, Vol. 78. Knölker H.-J. Academic Press; New York: 2017: 205-352
  • 4 Blackman AJ, Hambley TW, Picker K, Taylor WC, Thirasasana N. Tetrahedron Lett. 1987; 28: 5561
    • 5a Ruan Z, Zhu L, Zheng K, Hong R. Tetrahedron Lett. 2021; 67: e152880
    • 5b Rohini R, Reddy MP, Shanker K, Hu A, Ravinder V. Eur. J. Med. Chem. 2010; 45: 1200
    • 6a Cimino G, De Stefano S, Scognamiglio G, Sodano G, Trivellone E. Bull. Soc. Chim. Belg. 1986; 95: 783
    • 6b Cimino G, Mattia CA, Mazzarella L, Puliti R, Scognamiglio G, Spinella A, Trivellone E. Tetrahedron 1989; 45: 3863
    • 7a Higo T, Ukegawa T, Yokoshima S, Fukuyama T. Angew. Chem. Int. Ed. 2015; 54: 7367
    • 7b Becker MH, Chua P, Downham R, Douglas CJ, Garg NK, Hiebert S, Jaroch S, Matsuoka RT, Middleton JA, Ng FW, Overman LE. J. Am. Chem. Soc. 2007; 129: 11987
    • 7c Garg NK, Hiebert S, Overman LE. Angew. Chem. Int. Ed. 2006; 45: 2912
    • 8a Baldwin JE, Whitehead RC. Tetrahedron Lett. 1992; 33: 2059
    • 8b Delpech B. The Saraine Alkaloids. In The Alkaloids: Chemistry and Biology, Vol. 73. Knölker H.-J. Academic Press; New York: 2014: 223-329
    • 8c Tang Y, Zhu L, Hong R. Tetrahedron Chem 2022; 3: e100025
    • 9a Ruan Z, Wang M, Yang C, Zhu L, Su Z, Hong R. JACS Au 2022; 2: 793
    • 9b Liu Y, Ruan Z, Wang Y, Huang S.-H, Hong R. Tetrahedron Lett. 2019; 75: 1767
    • 9c Zhai L, Tian X, Wang C, Cui Q, Li W, Huang S.-H, Yu Z.-X, Hong R. Angew. Chem. Int. Ed. 2017; 56: 11599
    • 9d Ouyang J, Mi X, Wang Y, Hong R. Synlett 2017; 28: 762
    • 9e Huang S.-H, Tian X, Mi X, Wang Y, Hong R. Tetrahedron Lett. 2015; 56: 6656
    • 9f Liu H, Yu J, Li X, Yan R, Xiao J.-C, Hong R. Org. Lett. 2015; 17: 4444
    • 9g Ouyang J, Yan R, Mi X, Hong R. Angew. Chem. Int. Ed. 2015; 54: 10940
  • 10 Sakamoto K, Tsujii E, Abe F, Nakanishi T, Yamashita M, Shigematsu N, Izumi S, Okuhara M. J. Antibiot. 1996; 49: 37
  • 11 Mann J. Nat. Prod. Rep. 2001; 18: 417
  • 12 For a recent review, see: Ruan Z.-W, Li C, Shen D.-F, Huang S.-H, Hong R. Synthesis 2019; 51: 2237

    • For the total synthesis of FR901483, see:
    • 13a Reich D, Trowbridge A, Gaunt MJ. Angew. Chem. Int. Ed. 2020; 59: 2256
    • 13b Huo H.-H, Xia X.-E, Zhang H.-K, Huang P.-Q. J. Org. Chem. 2013; 78: 455
    • 13c Ma A.-J, Tu Y.-Q, Peng J.-B, Dou Q.-Y, Hou S.-H, Zhang F.-M, Wang S.-H. Org. Lett. 2012; 14: 3604
    • 13d Ieda S, Asoh Y, Fujimoto T, Kitaoka H, Kan T, Fukuyama T. Heterocycles 2009; 79: 721
    • 13e Kan T, Fujimoto T, Ieda S, Asoh Y, Kitaoka H, Fukuyama T. Org. Lett. 2004; 6: 2729
    • 13f Ousmer M, Braun NA, Ciufolini MA. Org. Lett. 2001; 3: 765
    • 13g Ousmer M, Braun NA, Perrin M, Ciufolini MA. J. Am. Chem. Soc. 2001; 123: 7534
    • 13h Maeng JH, Funk RL. Org. Lett. 2001; 3: 1125
    • 13i Scheffler G, Seike H, Sorensen EJ. Angew. Chem. Int. Ed. 2000; 39: 4593
    • 13j Snider BB, Lin H. J. Am. Chem. Soc. 1999; 121: 7778

      For the formal synthesis of FR901483, see:
    • 14a Huo H.-H, Zhang H.-K, Xia X.-E, Huang P.-Q. Org. Lett. 2012; 14: 4834
    • 14b Ieda S, Masuda A, Kariyama M, Wakimoto T, Asakawa T, Fukuyama T, Kan T. Heterocycles 2012; 86: 1071
    • 14c Ieda S, Kan T, Fukuyama T. Tetrahedron Lett. 2010; 51: 4027
    • 14d Carson CA, Kerr MA. Org. Lett. 2009; 11: 777
    • 14e Hong S.-P, Brummond KM. J. Org. Chem. 2005; 70: 907
    • 14f Lu J.-L, Brummond KM. Org. Lett. 2001; 3: 1347

      For the skeleton synthesis of FR901483, see:
    • 15a Li B.-L, Gao W.-Y, Li H, Zhang S.-Q, Han X.-Q, Lu J, Liang R.-X, Hong X, Jia Y.-X. Chin. J. Chem. 2019; 37: 63
    • 15b Diaba F, Martínez-Laporta A, Bonjoch J. J. Org. Chem. 2014; 79: 9365
    • 15c Perreault S, Rovis T. Synthesis 2013; 45: 719
    • 15d Seike H, Sorensen EJ. Synlett 2008; 695
    • 15e Diaba F, Ricou E, Solé D, Teixidó E, Valls N, Bonjoch J. ARKIVOC 2007; (iv): 320
    • 15f Asari A, Angelow P, Auty JM, Hayes CJ. Tetrahedron Lett. 2007; 48: 2631
    • 15g Simila ST. M, Martin SF. J. Org. Chem. 2007; 72: 5342
    • 15h Kaden S, Reissing HU. Org. Lett. 2006; 8: 4763
    • 15i Simila ST. M, Reichelt A, Martin SF. Tetrahedron Lett. 2006; 47: 2933
    • 15j Kropf JE, Meigh IC, Bebbington MW. P, Weinreb SM. J. Org. Chem. 2006; 71: 2046
    • 15k Bonjoch J, Diaba F, Puigbo G, Peidro E, Sole D. Tetrahedron Lett. 2003; 44: 8387
    • 15l Wardrop DJ, Zhang W.-M. Org. Lett. 2001; 3: 2353
    • 15m Suzuki H, Yamazaki N, Kibayashi C. Tetrahedron Lett. 2001; 42: 3013
  • 16 Schneider G, Neidhart W, Giller T, Schmid G. Angew. Chem. Int. Ed. 1999; 38: 2894
  • 17 Thomas A, Nagamalla S, Sathyamoorthi S. Chem. Sci. 2020; 11: 8073
    • 18a Xie C, Luo J, Zhang Y, Huang S.-H, Zhu L, Hong R. Org. Lett. 2018; 20: 2386
    • 18b Luo J, Xie C, Zhang Y, Huang S.-H, Zhu L, Hong R. Tetrahedron 2018; 74: 5791
  • 19 Nishkimi Y, Iimori T, Sodeoka M, Shibasaki M. J. Org. Chem. 1989; 54: 3354
  • 20 Keck GE, McHardy SF, Wager TT. Tetrahedron Lett. 1995; 36: 7419
  • 21 See the Supporting Information for details
  • 22 Davis FA, Chen B.-C. Chem. Rev. 1992; 92: 919
  • 23 Jing P, Yang Z, Zhao C.-G, Zheng H.-Ji, Fang B.-W, Xie X.-G, She X.-G. Chem. Eur. J. 2012; 18: 6729
  • 24 Wagnières O, Xu Z.-R, Wang Q, Zhu J.-P. J. Am. Chem. Soc. 2014; 136: 15102
  • 25 Nakazawa N, Tagami K, Iimori H, Sano S, Ishikawa T, Nagao Y. Hetereocycles 2001; 55: 2157
  • 26 Müller TE, Hultzsch KC, Yus M, Foubelo F, Tada M. Chem. Rev. 2008; 108: 3795
  • 27 Yamamoto Y, Fujikawa R, Umemoto T, Miyaura N. Tetrahedron 2004; 60: 10695

    • For recent reviews on the bridged ring systems, see:
    • 28a Wang L, Zhang Z, Han H, Liu X, Bu Z, Wang Q. Chin. J. Org. Chem. 2021; 41: 12
    • 28b Wu T, Tang W.-J. Chem. Eur. J. 2021; 27: 3944
  • 29 Zhai L, Tang Y, Zhang Y, Huang S.-H, Zhu L, Hong R. Chem. Rec. 2022; 22: e202100197
  • 30 Allin SM, Duffy LJ, Towler JM. R, Page PC. B, Elsegood MR. J, Saha B. Tetrahedron 2009; 65: 10230