Planta Med 2023; 89(09): 903-915
DOI: 10.1055/a-2021-2812
Pharmacokinetic Investigations
Original Papers

Multiple Component Pharmacokinetics after Oral Administration of Gnaphalium affine Extract in Rats

Shiyi Han
State Key Lab. of New Drug and Pharmaceutical Process, Shanghai Institute of Pharmaceutical Industry Co., Ltd, China State Institute of Pharmaceutical Industry Co., Ltd, Shanghai, Peopleʼs Republic of China
,
Xizi Liu
State Key Lab. of New Drug and Pharmaceutical Process, Shanghai Institute of Pharmaceutical Industry Co., Ltd, China State Institute of Pharmaceutical Industry Co., Ltd, Shanghai, Peopleʼs Republic of China
,
Ye Chen
State Key Lab. of New Drug and Pharmaceutical Process, Shanghai Institute of Pharmaceutical Industry Co., Ltd, China State Institute of Pharmaceutical Industry Co., Ltd, Shanghai, Peopleʼs Republic of China
,
Junping Chen
State Key Lab. of New Drug and Pharmaceutical Process, Shanghai Institute of Pharmaceutical Industry Co., Ltd, China State Institute of Pharmaceutical Industry Co., Ltd, Shanghai, Peopleʼs Republic of China
,
Qinghua Han
State Key Lab. of New Drug and Pharmaceutical Process, Shanghai Institute of Pharmaceutical Industry Co., Ltd, China State Institute of Pharmaceutical Industry Co., Ltd, Shanghai, Peopleʼs Republic of China
,
Siyang Fan
State Key Lab. of New Drug and Pharmaceutical Process, Shanghai Institute of Pharmaceutical Industry Co., Ltd, China State Institute of Pharmaceutical Industry Co., Ltd, Shanghai, Peopleʼs Republic of China
› Institutsangaben
Gefördert durch: Natural Science Foundation of Shanghai 15ZR1440100
Gefördert durch: Data Center of Management Science, National Natural Science Foundation of China - Peking University 81603279

Abstract

Gnaphalium affine is traditionally used to treat hyperuricemia and gout in China. Recently, the hypouricemic and renal protective effects of G. affine extract (GAD) have been deeply evaluated. However, little is known about the pharmacokinetics (PKs) of bioactive constituents in GAD. This study is aimed at investigating the individual and holistic pharmacokinetics of 10 bioactive components (including caffeic acid, caffeoylquinic acids, and flavonoids) in rats after single and multiple administrations of GAD. GAD is orally dosed to normal male rats at doses of 225, 450, or 900 mg/kg/day for 10 consecutive days and also orally administrated to uric acid nephropathy (UAN) rats at a dose of 900 mg/kg/day for 28 consecutive days. Integrated PKs of multiple components are calculated by area under the curve (AUC)-based weighting approach. All the components show a double-peak phenomenon in terms of their plasma concentration-time curves, suggesting that the components undergo enterohepatic circulation. The integrated AUC increases in a good dose-proportional manner with GAD dose. Compared with that in normal rats, the plasma exposure of caffeic acid and caffeoylquinic acids increases by 2.3- to 4.3-fold after 10-day chronic treatment of 900 mg/kg GAD in UAN rats. Modest drug accumulation is observed after 28-day chronic treatment.

Supporting Information



Publikationsverlauf

Eingereicht: 29. September 2022

Angenommen nach Revision: 27. Januar 2023

Accepted Manuscript online:
27. Januar 2023

Artikel online veröffentlicht:
10. März 2023

© 2023. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Zhang W, Fan SY, Wu CZ. Review on chemical constituents and pharmacological activities of Gnaphalium affine D. Don. Chin J Pharmaceut 2016; 47: 1057-1064
  • 2 Zhang HJ, Li LN, Zhou J, Yang QQ, Liu PG, Xu P, Liang WQ, Cheng L, Zhang YQ, Pu JB, Hu YJ. Effects of Gnaphalium affine D. Don on hyperuricemia and acute gouty arthritis. J Ethnopharmacol 2017; 203: 304-311
  • 3 Jiang Y, Lin Y, Hu YJ, Song XJ, Pan HH, Zhang HJ. Caffeoylquinic acid derivatives rich extract from Gnaphalium pensylvanicum willd. ameliorates hyperuricemia and acute gouty arthritis in animal model. BMC Complement Altern Med 2017; 17: 320
  • 4 Zhang W, Wu CZ, Fan SY. Chemical constituents from Gnaphalium affine and their xanthine oxidase inhibitory activity. Chin J Nat Med 2018; 16: 347-353
  • 5 Liu F, Lin S, Wu C, Huang T, Jia A, Fan S. Hypouricemic activity of Gnaphalium affine D. Don. J Shenyang Pharmaceut Univ 2020; 37: 12-20
  • 6 Liu X, Han S, Yang Q, Fan S. Beneficial herb-drug interaction of Gnaphalium affine extract on benzbromarone: A pharmacokinetic and pharmacodynamic study in rats. Phytomedicine 2022; 102: 154203
  • 7 Liu XZ, Liu F, Yang Q, Han SY, Fan SY. Enhanced efficacy and reduced hepatotoxicity by combination of Gnaphalium affine extract and benzbromarone in the treatment of rats with hyperuricemic nephropathy. Pharmaceut Fronts 2021; 3: e129-e137
  • 8 Liu XZ, Han SY, Chen Y, Fan SY. Quantitative determination of caffeic acid derivatives in Gnaphalium affine D. Don. extract. J Shenyang Pharmaceut Univ 2022; DOI: 10.14066/j.cnki.cn21-1349/r.2022.0138.
  • 9 Dalbeth N, Gosling AL, Gaffo A, Abhishek A. Gout. Lancet 2021; 397: 1843-1855
  • 10 Nguyen MT, Awale S, Tezuka Y, Ueda JY, Tran Q, Kadota S. Xanthine oxidase inhibitors from the flowers of Chrysanthemum sinense . Planta Med 2006; 72: 46-51
  • 11 Wang SH, Chen CS, Huang SH, Yu SH, Lai ZY, Huang ST, Lin CM. Hydrophilic ester-bearing chlorogenic acid binds to a novel domain to inhibit xanthine oxidase. Planta Med 2009; 75: 1237-1240
  • 12 Lin Y, Liu PG, Liang WQ, Hu YJ, Xu P, Zhou J, Pu JB, Zhang HJ. Luteolin-4′-O-glucoside and its aglycone, two major flavones of Gnaphalium affine D. Don, resist hyperuricemia and acute gouty arthritis activity in animal models. Phytomedicine 2018; 41: 54-61
  • 13 Azuma K, Ippoushi K, Nakayama M, Ito H, Higashio H, Terao J. Absorption of chlorogenic acid and caffeic acid in rats after oral administration. J Agric Food Chem 2000; 48: 5496-5500
  • 14 Zhou P, Li LP, Luo SQ, Jiang HD, Zeng S. Intestinal absorption of luteolin from peanut hull extract is more efficient than that from individual pure luteolin. J Agric Food Chem 2008; 56: 296-300
  • 15 Wittemer SM, Ploch M, Windeck T, Müller S, Drewelow B, Derendorf H, Veit M. Bioavailability and pharmacokinetics of caffeoylquinic acids and flavonoids after oral administration of Artichoke leaf extracts in humans. Phytomedicine 2005; 12: 28-38
  • 16 Su D, Huang J, Song Y, Feng Y. Comparative pharmacokinetics and tissue distribution study of mono-, and di-caffeoylquinic acids isomers of Ainsliaea fragrans Champ by a fast UHPLC-MS/MS method. Fitoterapia 2014; 99: 139-152
  • 17 Sarawek S, Derendorf H, Butterweck V. Pharmacokinetics of luteolin and metabolites in rats. Nat Prod Commun 2008; 3: 2029-2036
  • 18 Roberts MS, Magnusson BM, Burczynski FJ, Weiss M. Enterohepatic circulation: Physiological, pharmacokinetic and clinical implications. Clin Pharmacokinet 2002; 41: 751-790
  • 19 Platt D. Pharmacokinetics of drug overdose. Clin Lab Med 1990; 10: 261-269
  • 20 Lin LC, Pai YF, Tsai TH. Isolation of luteolin and luteolin-7-O-glucoside from Dendranthema morifolium Ramat Tzvel and their pharmacokinetics in rats. J Agric Food Chem 2015; 63: 7700-7706
  • 21 Lafay S, Morand C, Manach C, Besson C, Scalbert A. Absorption and metabolism of caffeic acid and chlorogenic acid in the small intestine of rats. Br J Nutr 2006; 96: 39-46
  • 22 Mukinda JT, Syce JA, Fisher D, Meyer M. Effect of the plant matrix on the uptake of luteolin derivatives-containing Artemisia afra aqueous-extract in caco-2 cells. J Ethnopharmacol 2010; 130: 439-449
  • 23 Liu Y, Qiu S, Wang L, Zhang N, Shi Y, Zhou H, Liu X, Shao L, Liu X, Chen J, Hou M. Reproductive and developmental toxicity study of caffeic acid in mice. Food Chem Toxicol 2019; 123: 106-112
  • 24 Droździk M, Oswald S, Droździk A. Impact of kidney dysfunction on hepatic and intestinal drug transporters. Biomed Pharmacother 2021; 143: 112125
  • 25 Meineke I, Gleiter CH. Assessment of drug accumulation in the evaluation of pharmacokinetic data. J Clin Pharmacol 1998; 38: 680-684
  • 26 Rengelshausen J, Banfield M, Riedel K, Burhenne J, Weiss J, Thomsen T, Walter-Sack I, Haefeli W, Mikus G. Opposite effects of short-term and long-term St Johnʼs wort intake on voriconazole pharmacokinetics. Clin Pharmacol Ther 2005; 78: 25-33
  • 27 Kim YG, Huang XR, Suga S, Mazzali M, Tang D, Metz C, Bucala R, Kivlighn S, Johnson RJ, Lan HY. Involvement of macrophage migration inhibitory factor (MIF) in experimental uric acid nephropathy. Mol Med 2000; 6: 837-848
  • 28 Li XY, Hao HP, Wang GJ, Sun JG, Yan B. Integrated pharmacokinetic study of multiple effective components contained in total panax notoginsenosides. Chin J Nat Med 2008; 6: 377-381