Planta Med 2023; 89(10): 979-989
DOI: 10.1055/a-2058-3710
Biological and Pharmacological Activity
Original Papers

Indole Alkaloids of Rauvolfia ligustrina and Their Anxiolytic Effects in Adult Zebrafish

1   Departamento de Química Orgânica e Inorgânica, Universidade Federal do Ceará, Fortaleza-CE, Brazil
,
Alison Batista da Silva
1   Departamento de Química Orgânica e Inorgânica, Universidade Federal do Ceará, Fortaleza-CE, Brazil
,
Maria Kueirislene Amâncio Ferreira
2   Programa de Graduação em Ciências Naturais, Universidade Estadual de Ceará, Fortaleza-CE, Brazil
,
Antonio Wlisses da Silva
3   Programa de Graduação em Biotecnologia, Universidade Estadual de Ceará, Fortaleza-CE, Brazil
,
Jane Eire Silva Alencar de Menezes
2   Programa de Graduação em Ciências Naturais, Universidade Estadual de Ceará, Fortaleza-CE, Brazil
,
Emmanuel Silva Marinho
2   Programa de Graduação em Ciências Naturais, Universidade Estadual de Ceará, Fortaleza-CE, Brazil
,
Márcia Machado Marinho
4   Curso de Química, Universidade Estadual do Vale do Acaraú, Sobral-CE, Brazil
,
Helcio Silva dos Santos
4   Curso de Química, Universidade Estadual do Vale do Acaraú, Sobral-CE, Brazil
,
1   Departamento de Química Orgânica e Inorgânica, Universidade Federal do Ceará, Fortaleza-CE, Brazil
› Institutsangaben
This work was supported by grants from Conselho Nacional de Desenvolvimento Científico e Tecnológico – CNPq (No. 420454/2016-0 and 310183/2020-0).

Abstract

Rauvolfia species are well known as producers of bioactive monoterpene indole alkaloids, which exhibit a broad spectrum of biological activities. A new vobasine-sarpagan-type bisindole alkaloid (1) along with six known monomeric indoles (2, 3/4, 5, and 6/7) were isolated from the ethanol extract of the roots of Rauvolfia ligustrina. The structure of the new compound was elucidated by interpretation of their spectroscopic data (1D and 2D NMR and HRESIMS) and comparison with published data for analog compounds. The cytotoxicity of the isolated compounds was screened in a zebrafish (Danio rerio) model. The possible GABAergic (diazepam as the positive control) and serotoninergic (fluoxetine as the positive control) mechanisms of action in adult zebrafish were also evaluated. No compounds were cytotoxic. Compound 2 and the epimers 3/4 and 6/7 showed a mechanism action by GABAA, while compound 1 showed a mechanism action by a serotonin receptor (anxiolytic activity). Molecular docking studies showed that compounds 2 and 5 have a greater affinity by the GABAA receptor when compared with diazepam, whereas 1 showed the best affinity for the 5HT2AR channel when compared to risperidone.

Supporting Information



Publikationsverlauf

Eingereicht: 02. August 2022

Angenommen nach Revision: 20. März 2023

Accepted Manuscript online:
20. März 2023

Artikel online veröffentlicht:
15. Mai 2023

© 2023. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Royal Botanics Garden. Plants of the world online. Accessed July 12, 2022 at: http://www.plantsoftheworldonline.org/taxon/urn:lsid:ipni.org:names:328992-2
  • 2 Lobay D. Rauwolfia in the treatment of hypertension. J Integr Med 2015; 14: 40-46
  • 3 Yu J, Ma Y, Drisko J, Chen Q. Antitumor activities of Rauwolfia vomitoria extract and potentiation of carboplatin effects against ovarian cancer. Curr Ther Res Clin Exp 2013; 75: 8-14
  • 4 Carlos LA, Amaral KAS, Vieira IJC, Mathias L, Braz-Filho R, Samarão SS, Vieira-da-Mota O. Rauvolfia grandiflora (Apocynaceae) extract interferes with staphylococcal density, enterotoxin production, and antimicrobial activity. Braz J Microbiol 2010; 41: 612-620
  • 5 Santiago-Cruz JA, Arrieta J, Garcia-Machorro J, Arrieta-Baez D, Sanchez-Mendonza ME. Cytotoxic activity of Rauvolfia tetraphylla L. on human cervical cancer (HeLa) cells. Phcog Mag 2019; 15: 631-637
  • 6 Singh A, Tripathi S, Singh PN. Anxiolytic activity of Rauvolfia tetraphylla leaf extract in rodents. J Chem Pharm Sci 2017; 10: 219-221
  • 7 Weerakoon SW, Arambewela LSR, Premakumara GAS, Ratnasooriya WD. Sedative activity of the crude extract of Rauvolfia densiflora . Pharm Biol 1998; 36: 360-361
  • 8 Pfaffenbach M, Gaich T. The Rhazinilam-Leuconoxine-Mersicarpine Triad of Monoterpenoid Indole Alkaloids. In: The Alkaloids: Chemistry and Biology, Vol. 77. San Diego: California Academic Press; 2017: 2
  • 9 Guanatilaka L. Alkaloids from Sri Lanka Flora. In: The Alkaloids: Chemistry and Biology, Vol. 52. San Diego, California: Academic Press; 1999: 23-85
  • 10 Liu L, Xie MJ, Zhou WB, Wang JT, Wang JY, Khan A, Liu YP, Cao JX, Cheng GG, Mao WY. Potent immunosuppressive and anti-inflammatory bisindole alkaloids from Melodinus fusiformis . Nat Prod Res 2021; 36: 1536-1542
  • 11 Nugroho AE, Ono Y, Jin E, Hirasawa Y, Kaneda T, Rahman IK, Tougan T, Horii T, Zaini NC, Morita H. Bisindole alkaloids from Voacanga grandifolia leaves. J Nat Med 2021; 75: 408-414
  • 12 Zhou SY, Zhou TL, Qiu G, Huan X, Miao ZH, Yang SP, Cao S, Fan F, Cai YS. Three new cytotoxic monoterpenoid bisindole alkaloids from Tabernaemontana bufalina . Planta Med 2018; 84: 1127-1133
  • 13 Paterna A, Gomes SE, Borralho PM, Mulhovo S, Rodrigues CMP, Ferreira MJU. (3′R)-hydroxytabernaelegantine C: A bisindole alkaloid with potent apoptosis inducing activity in colon (HCT116, SW620) and liver (HepG2) cancer cells. J Ethnopharmacol 2016; 194: 236-244
  • 14 Magalhães HS, Silva AB, Nascimento NRF, Sousa LGF, Fonseca MJS, Loiola MIB, Monteiro NKV, Neto FWQA, Canuto KM, Pessoa ODL. Effect of indole alkaloids from roots of Rauvolfia ligustrina in the noradrenergic neurotransmission. Fitoterapia 2020; 143: 104545
  • 15 Benneh CK, Biney RP, Mante PK, Tandoh A, Adongo DW, Woode E. Maerua angolensis stem bark extract reverses anxiety and related behaviours in zebrafish: involvement of GABAergic and 5-HT systems. J Ethnopharmacol 2017; 207: 129-145
  • 16 Hood SD, Norman A, Hince DA, Melichar JK, Hulse GK. Benzodiazepine dependence and its treatment with low dose flumazenil. Br J Clin Pharmacol 2014; 77: 285-294
  • 17 Graf H, Walter M, Metzger CD, Abler B. Antidepressant-related sexual dysfunction: perspectives from neuroimaging. Pharmacol Biochem Behav 2014; 121: 138-145
  • 18 López-Rubalcava C, Estrada-Camarena E. Mexican medicinal plants with anxiolytic or antidepressant activity: focus on preclinical research. J Ethnopharmacol 2016; 186: 377-391
  • 19 Hong B, Cheng W, Wu J, Zhao C. Screening and identification of many of the compounds present in Rauvolfia verticillata by use of high-pressure LC and quadrupole TOF MS. Chromatographia 2010; 72: 841-847
  • 20 Itoh A, Kumashiro T, Yamaguchi M, Nagakura N, Mizushina Y, Nishi T, Tanahashi T. Indole alkaloids and other constituents of Rauwolfia serpentina . J Nat Prod 2005; 68: 848-852
  • 21 Gao Y, Yu AL, Li GT, Hai P, Li Y, Liu JK, Wang F. Hexacyclic monoterpenoid indole alkaloids from Rauvolfia verticillata . Fitoterapia 2015; 107: 44-48
  • 22 Zeng J, Zhang DB, Zhou PP, Zhang QL, Zhao L, Chen JJ, Gao K. Rauvomines A and B, two monoterpenoid indole alkaloids from Rauvolfia vomitoria . Org Lett 2017; 19: 3998-4001
  • 23 Monnerat CS, Souza JJ, Mathias L, Braz-Filho R, Vieira IJC. A new indole alkaloid isolated from tabernaemontana Hystrix steud (Apocynaceae). J Braz Chem Soc 2005; 16: 1331-1335
  • 24 Namjoshi OA, Cook JM. Sarpagine and related alkaloids. Alkaloids Chem Biol 2016; 76: 63-169
  • 25 Kumar S, Kumari D, Singh B. Genus Rauvolfia: A review of its ethnopharmacology, phytochemistry, quality control/quality assurance, pharmacological activities and clinical evidence. J Ethnopharmacol 2022; 295: 115327
  • 26 Ramos AEF, Alcover C, Evanno L, Maciuk A, Litaudon M, Duplais C, Bernadat G, Gallard JF, Julian JC, Mouray E, Grellier P, Loiseau PM, Pomel S, Poupon E, Champy P, Beniddir MA. Revisiting previously investigated plants: A molecular networking-based study of Geissospermum laeve . J Nat Prod 2017; 80: 1007-1014
  • 27 Silveira TR, Schneider AC, Hammes TO. Zebrafish: modelo consagrado para estudos de doenças humanas. Cienc Cult 2012; 64: 4-5
  • 28 Gebauer DL, Pagnussat N, Piato AL, Schaefer IC, Bonan CD, Lara DR. Pharmacology, biochemistry and behavior effects of anxiolytics in zebrafish: Similarities and differences between benzodiazepines, buspirone, and ethanol. Pharmacol Biochem Behav 2011; 99: 480-486
  • 29 Taylor JC, Dewberry LS, Totsch SK, Yessick LR, DeBerry JJ, Watts SA, Sorgeb RE. A novel zebrafish-based model of nociception. Physiol Behav 2017; 174: 83-88
  • 30 Quadros VA, Rosa LV, Costa FV, Koakoski G, Barcellos LJG, Rosemberg DB. Predictable chronic stress modulates behavioral and neuroendocrine phenotypes of zebrafish: Influence of two homotypic stressors on stress-mediated responses. Comp Biochem Physiol Part C Toxicol Pharmacol 2021; 247: 109030
  • 31 Hawkey AB, Hoeng J, Peitsch MC, Levin ED, Koshibu K. Subchronic effects of plant alkaloids on anxiety-like behavior in zebrafish. Pharmacol Biochem Behav 2021; 207: 173223
  • 32 Calabrese EJ. Neuroscience and hormesis: overview and general findings. Crit Rev Toxicol 2008; 38: 249-252
  • 33 Kimura KT, Asada H, Inoue A, Kadji FMN, Im D, Mori C, Arakawa T, Hirata K, Nomura Y, Nomura N, Aoki J, Iwata S, Shimamura T. Structures of the 5-HT2A receptor in complex with the antipsychotics risperidone and zotepine. Nat Struct Mol Biol 2019; 26: 121-128
  • 34 Gebauer DL, Pagnussat N, Piato ÂL, Schaefer IC, Bonan CD, Lara DR. Effects of anxiolytics in zebrafish: similarities and differences between benzodiazepines, buspirone, and ethanol. Pharmacol Biochem Behav 2011; 99: 480-486
  • 35 Magalhães FEA, Sousa CAPB, Santos SAAR, Menezes RB, Batista FLA, Abreu AO, Oliveira MV, Moura LFWG, Raposo RS, Campos AR. Adult zebrafish (Danio rerio): An alternative behavioral model of formalin-induced nociception. Zebrafish 2017; 14: 422-429
  • 36 Arellano-Aguilar O, Solis-Angeles S, Serrano-Garcia L, Morales-Sierra E, Mendez-Serrano A, Montero-Montoya R. Use of the zebrafish embryo toxicity test for risk assessment purpose: Case study. J FisheriesSciences 2015; 9: 52-62
  • 37 Huey R, Morris GM, Forli S. Using Autodock 4 and Autodock Vina with AutoDockTools: A Tutorial. The Scripps Research Institute Molecular Graphics Laboratory. Accessed July 12, 2022 at: https://dasher.wustl.edu/chem430/software/autodock/tutorial-hiv-protease.pdf
  • 38 Trott O, Olson AJ. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 2010; 31: 455-461
  • 39 Hanwell MD, Curtis DE, Lonie DC, Vandermeersch T, Zurek E, Hutchison GR. Avogadro: an advanced semantic chemical editor, visualization, and analysis platform. J Cheminform 2012; 4: 17
  • 40 Dassault Systèmes. Biovia, Discovery Studio Modeling Environment, Release 2017.
  • 41 Allouche AR. Gabedit–a graphical user interface for computational chemistry softwares. J Comput Chem 2011; 32: 174-182
  • 42 Csizmadia P. MarvinSketch and MarvinView: Molecule Applets for the World Wide Web. The 3rd International Electronic Conference on Synthetic Organic Chemistry, Basel, Switzerland; 1999.
  • 43 DeLano WL. The PyMOL Molecular Graphics System, Version 2.3. Schrödinger LLC. 2020.
  • 44 Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE. UCSF Chimera–a visualization system for exploratory research and analysis. J Comput Chem 2004; 25: 1605-1612
  • 45 Halgren TA. Merck molecular force field. I. Basis, form, scope, parameterization, and performance of MMFF94. J Comput Chem 1996; 17: 490-519
  • 46 Batista de Andrade Neto J, Pessoa de Farias Cabral V, Brito Nogueira LF, Rocha da Silva C, Gurgel do Amaral Valente Sá L. Ramos da Silva A, Barbosa da Silva WM, Silva J, Marinho ES, Cavalcanti BC, Odorico de Moraes M, Nobre Júnior HV. Anti-MRSA activity of curcumin in planktonic cells and biofilms and determination of possible action mechanisms. Microb Pathog 2021; 155: 104892
  • 47 Ferreira MKA, da Silva AW, Silva FCO, Vieira Neto AE, Campos AR, Alves Rodrigues Santos SA, Rodrigues Teixeira AM, da Cunha Xavier J, Bandeira PN, Sampaio Nogueira CE, de Brito DHA, Rebouças EL, Magalhães FEA, de Menezes JESA, Dos Santos HS. Anxiolytic-like effect of chalcone N-{4′[(2E)-3-(3-nitrophenyl)-1-(phenyl)prop-2-en-1-one]} acetamide on adult zebrafish (Danio rerio): Involvement of the 5-HT system. Biochem Biophys Res Commun 2020; 526: 505-511
  • 48 Xavier JC, Ferreira MKA, da Silva AW, de Menezes JESA, Teixeira AMR, Bandeira PN, Marinho EM, Marinho ES, Marinho MM, dos Santos HS. Anxiolytic-like and anticonvulsant effect in adult zebrafish (Danio rerio) through gabaergic system and molecular docking study of chalcone derived from natural products. Biointerface Res Appl Chem 2021; 11: 14021-14031
  • 49 Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, Olson AJ. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J Comp Chem 2009; 30: 2785-2791
  • 50 Yan J, Zhang G, Pan J, Wang Y. α-Glucosidase inhibition by luteolin: Kinetics, interaction and molecular docking. Int. J Biol Macromol 2014; 64: 213-223
  • 51 Marinho EM, Neto JBA, Silva J, Rocha da Silva C, Cavalcanti BC, Marinho ES, Júnior HVN. Virtual screening based on molecular docking of possible inhibitors of Covid-19 main protease. Microb Pathog 2020; 148: 1-6
  • 52 Yusuf D, Davis AM, Kleywegt GJ, Schmitt S. An alternative method for the evaluation of docking performance: RSR vs. RMSD. J Chem Inf Model 2008; 48: 1411-1422
  • 53 Imberty A, Hardman KD, Carver JP, Perez S. Molecular modeling of protein-carbohydrate interactions. Docking of monosaccharides in the binding site of concanavalin A. Glycobiology 1991; 1: 631-642