Hamostaseologie 2023; 43(06): 440-446
DOI: 10.1055/a-2094-7191
Case Report

Fibrinogen Bonn (p. Arg510Cys) in the Aα-Chain Is Associated with High Risk of Venous Thrombosis

V. Ivaškevičius
1   Institute for Experimental Hematology and Transfusion Medicine, University Hospital Bonn, Bonn, Germany
,
A. Biswas
1   Institute for Experimental Hematology and Transfusion Medicine, University Hospital Bonn, Bonn, Germany
,
S. Singh
1   Institute for Experimental Hematology and Transfusion Medicine, University Hospital Bonn, Bonn, Germany
,
U. Stulpinaitė
2   Lithuanian University of Health Sciences, Kaunas, Lithuania
,
S. Reda
1   Institute for Experimental Hematology and Transfusion Medicine, University Hospital Bonn, Bonn, Germany
,
H. Rühl
1   Institute for Experimental Hematology and Transfusion Medicine, University Hospital Bonn, Bonn, Germany
,
B. Pezeshkpoor
1   Institute for Experimental Hematology and Transfusion Medicine, University Hospital Bonn, Bonn, Germany
,
A. Pavlova
1   Institute for Experimental Hematology and Transfusion Medicine, University Hospital Bonn, Bonn, Germany
,
J. Oldenburg
1   Institute for Experimental Hematology and Transfusion Medicine, University Hospital Bonn, Bonn, Germany
› Author Affiliations

Abstract

Introduction Inherited dysfibrinogenemia is a qualitative defect of fibrinogen caused by various mutations among three fibrinogen genes. Dysfibrinogenemia can be associated with an increased risk of thrombosis, bleeding, or both. Here, we report a 36-year-old female with dysfibrinogenemia who experienced two successful pregnancies under thromboprophylaxis after cerebral venous sinus thrombosis (CVST).

Patients and Methods In addition to plasmatic coagulation tests, fibrinogen genes FGA, FGB, and FGG were screened using direct genomic DNA sequencing. The structural-functional implications of the detected mutation were analyzed in silico.

Results Inherited dysfibrinogenemia was diagnosed in an index patient after CVST in a risk situation. Anticoagulation with warfarin was stopped after 12 months when the first pregnancy was planned. Pregnancy and spontaneous delivery (2020) was uncomplicated. A second pregnancy was interrupted because of acute cytomegalovirus infection and the third pregnancy was successful in 2022. Pregnancies were accompanied by thromboprophylaxis with enoxaparin 40 mg once daily until 6 weeks postpartum. Substitution of fibrinogen has not become necessary in the index patient so far. Genetic analysis revealed a novel missense mutation (p. Arg510Cys) in the FGA gene (“fibrinogen Bonn”) in the index patient, as well as an asymptomatic sister, and their father who experienced recurrent pulmonary embolism. Surface exposure of wild-type Arg510 suggested the mutated Cys510 to form nonnative disulfide bonds with surface-exposed reactive cysteines from other plasma proteins like albumin leading to formation of aggregates and impaired fibrinolysis.

Conclusions Fibrinogen Bonn might be associated with an increased risk of thrombosis, possibly due to impaired polymerization.

Zusammenfassung

Bei der Dysfibrinogenämie handelt es sich um einen qualitativen Defekt des Fibrinogens, der mit einem erhöhten Thromboserisiko, einer Blutungsneigung oder einer Kombination beider einhergehen kann. Als Ursache sind verschiedene Mutationen beschrieben, die jedes der drei Fibrinogen-Gene betreffen können. Wir schildern den Fall einer 36jährigen Patientin mit Dysfibrinogenämie und zwei erfolgreichen Schwangerschaften unter prophylaktischer Antikoagulation nach einer cerebralen Venen- und Sinusthrombose (CVST).

Methoden Zusätzlich zur plasmatischen Gerinnungsdiagnostik erfolgte eine Sequenzierung der Fibrinogen-Gene FGA, FGB und FGG. Die Struktur-Funktions-Analyse der erstmalig beschriebenen Mutation erfolgte in silico.

Ergebnisse Die Dysfibrinogenämie der Patientin wurde nach Auftreten einer Risiko-assoziierten CVST diagnostiziert. Eine Antikoagulation mit Warfarin wurde 12 Monate nach CVST bei Kinderwunsch beendet. 2020 und 2022 erfolgten jeweils unter prophylaktischer Antikoagulation mit Enoxaparin 40 mg täglich zwei komplikationslose Schwangerschaften und Entbindungen, die Substitution von Fibrinogen war nicht erforderlich. Eine dazwischenliegende Schwangerschaft wurde aufgrund einer Cytomegalievirus-Infektion beendet. Molekulargenetisch ließ sich bei der Indexpatientin, einer asymptomatischen Schwester und dem Vater, der rezidivierende Lungenembolien erlitten hatte, eine Missense-Mutation (p. Arg510Cys) des FGA-Gens („Fibrinogen Bonn“) erstbeschreiben. Die Oberflächenexposition von Wildtyp Arg510 lässt vermuten, dass mutiertes Cys510 nicht-native Disulfid-Brücken mit reaktiven Cysteinen auf der Oberfläche anderer Plasmaproteine wie Albumin bildet. Dies könnte zur Bildung von Aggregaten und einer beeinträchtigten Fibrinolyse führen.

Schlussfolgerung Fibrinogen Bonn ist aufgrund einer gestörten Polymerisationsfähigkeit möglicherweise mit einem erhöhten Thromboserisiko assoziiert.



Publication History

Received: 16 April 2023

Accepted: 15 May 2023

Article published online:
13 July 2023

© 2023. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Matsuda M, Sugo T. Hereditary disorders of fibrinogen. Ann N Y Acad Sci 2001; 936: 65-88
  • 2 Chung DW, Harris JE, Davie EW. Nucleotide sequences of the three genes coding for human fibrinogen. Adv Exp Med Biol 1990; 281: 39-48
  • 3 Zhang JZ, Redman CM. Assembly and secretion of fibrinogen. Involvement of amino-terminal domains in dimer formation. J Biol Chem 1996; 271 (21) 12674-12680
  • 4 Tennent GA, Brennan SO, Stangou AJ, O'Grady J, Hawkins PN, Pepys MB. Human plasma fibrinogen is synthesized in the liver. Blood 2007; 109 (05) 1971-1974
  • 5 Casini A, de Moerloose P, Neerman-Arbez M. Clinical features and management of congenital fibrinogen deficiencies. Semin Thromb Hemost 2016; 42 (04) 366-374
  • 6 Casini A, Undas A, Palla R, Thachil J, de Moerloose P. Subcommittee on Factor XIII and Fibrinogen. Diagnosis and classification of congenital fibrinogen disorders: communication from the SSC of the ISTH. J Thromb Haemost 2018; 16 (09) 1887-1890
  • 7 Casini A, Neerman-Arbez M, Ariëns RA, de Moerloose P. Dysfibrinogenemia: from molecular anomalies to clinical manifestations and management. J Thromb Haemost 2015; 13 (06) 909-919
  • 8 Richards S, Aziz N, Bale S. et al; ACMG Laboratory Quality Assurance Committee. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med 2015; 17 (05) 405-424
  • 9 Stenson PD, Mort M, Ball EV, Shaw K, Phillips A, Cooper DN. The Human Gene Mutation Database: building a comprehensive mutation repository for clinical and molecular genetics, diagnostic testing and personalized genomic medicine. Hum Genet 2014; 133 (01) 1-9
  • 10 Rehm HL, Berg JS, Brooks LD. et al; ClinGen. ClinGen – the clinical genome resource. N Engl J Med 2015; 372 (23) 2235-2242
  • 11 Casini A, de Moerloose P. How I treat dysfibrinogenemia. Blood 2021; 138 (21) 2021-2030
  • 12 Lee CA, Chi C, Pavord SR. et al; UK Haemophilia Centre Doctors' Organization. The obstetric and gynaecological management of women with inherited bleeding disorders–review with guidelines produced by a taskforce of UK Haemophilia Centre Doctors' Organization. Haemophilia 2006; 12 (04) 301-336
  • 13 Soria J, Mirshahi S, Mirshahi SQ. et al. Fibrinogen αC domain: its importance in physiopathology. Res Pract Thromb Haemost 2019; 3 (02) 173-183
  • 14 Koopman J, Haverkate F, Grimbergen J. et al. Molecular basis for fibrinogen Dusart (A alpha 554 Arg–>Cys) and its association with abnormal fibrin polymerization and thrombophilia. J Clin Invest 1993; 91 (04) 1637-1643
  • 15 Marchi R, Mirshahi SS, Soria C. et al. Thrombotic dysfibrinogenemia. Fibrinogen “Caracas V” relation between very tight fibrin network and defective clot degradability. Thromb Res 2000; 99 (02) 187-193