CC BY 4.0 · Synthesis 2023; 55(16): 2473-2482
DOI: 10.1055/a-2097-0092
feature

Kinetic or Thermodynamic Product? Case Studies on the Formation of Regioisomers of Tetraphenyladamantanes

Tim Berking
,
Wolfgang Frey
,
Clemens Richert
This work was supported by Deutsche Forschungsgemeinschaft (DFG), grant No. RI-1063/17-1, and the University of Stuttgart.


Abstract

Tetraaryladamantanes (TAAs) with alkoxyphenyl groups are interesting synthetic targets because they can act as crystallization chaperones for liquid compounds. Their carbon framework is set up by Friedel–Crafts alkylation, using adamantane-1,3,5,7-tetraol and anisole derivatives as starting materials. One successful chaperone is 1,3,5,7-tetrakis(2-bromo-4-methoxyphenyl)adamantane (TBro). This compound was initially considered the thermodynamic product of alkyl­ation and its reaction towards strong Brønsted acid is reported. We now report that exposure of TBro to strong Brønsted acid leads to its regioisomer 1,3,5,7-tetrakis(4-bromo-2-methoxyphenyl)adamantane (iTBro) as the dominant product, obtained in a yield of 68%, far surpassing the 20% yield reported earlier for TBro. We also investigated the reactions of 3-iodo-, 3-chloro-, and 3-fluoroanisole to the corresponding TAAs and obtained yields of 66%, 26% and 52% for the main regioisomer. While 3-iodoanisole gave the same regioisomer as bromoanisole, 3-chloroanisole afforded complex mixtures and 3-fluoroanisole furnished 1,3,5,7-tetrakis(2-fluoro-4-methoxyphenyl)adamantane (TFM) in 52% yield as the main product. When mixtures of regioisomers were isomerized with an excess of triflic acid, the thermodynamic products were obtained in 76–91%. These results show how subtle effects govern the regioisomeric product distribution of aryladamantanes. They also help to make novel crystallization chaperones accessible in high yields.

Supporting Information



Publication History

Received: 28 March 2023

Accepted after revision: 11 May 2023

Accepted Manuscript online:
22 May 2023

Article published online:
19 June 2023

© 2023. This is an open access article published by Thieme under the terms of the Creative Commons Attribution License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by/4.0/)

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Tominaga M, Hyodo T, Maekawa Y, Kawahata M, Yamaguchi K. Chem. Eur. J. 2020; 26: 5157
  • 2 Tominaga M, Kunitomi N, Katagiri K, Itoh T. Org. Lett. 2015; 17: 786
  • 3 Tominaga M, Noda A, Ohara K, Yamaguchi K, Itoh T. Chem. Lett. 2016; 45: 773
  • 4 Hyodo T, Tominaga M, Yamaguchi K. CrystEngComm 2021; 23: 1539
  • 5 Nasrallah H, Hierso J.-C. Chem. Mater. 2019; 31: 619
  • 6 Li X, Guo J, Tong R, Topham PD, Wang J. React. Funct. Polym. 2018; 130: 126
  • 7 Gowrisankar S, Bernhardt B, Becker J, Schreiner PR. Eur. J. Org. Chem. 2021; e202101366
  • 8 Müller MJ, Ziese F, Belz J, Hüppe F, Gowrisankar S, Bernhardt B, Schwan S, Mollenhauer D, Schreiner PR, Volz K, Sanna S, Chatterjee S. Opt. Mater. Express 2022; 12: 3517
  • 9 Spasov AA, Khamidova TV, Bugaeva LI, Morozov IS. Pharm. Chem. J. 2000; 34: 1
  • 10 Wanka L, Iqbal K, Schreiner PR. Chem. Rev. 2013; 113: 3516
  • 11 Merkle RC. Nanotechnology 2000; 11: 89
  • 12 Tominaga M, Katagiri K, Azumaya I. Cryst. Growth Des. 2009; 9: 3692
  • 13 Tominaga M, Masu H, Azumaya I. Cryst. Growth Des. 2011; 11: 542
  • 14 Tominaga M, Takahashi E, Ukai H, Ohara K, Itoh T, Yamaguchi K. Org. Lett. 2017; 19: 1508
  • 15 Tominaga M, Yoneta T, Ohara K, Yamaguchi K, Itoh T, Minamoto C, Azumaya I. Org. Lett. 2014; 16: 4622
  • 16 Masu H, Tominaga M, Azumaya I. Cryst. Growth Des. 2013; 13: 752
  • 17 Tominaga M, Masu H, Azumaya I. CrystEngComm 2011; 13: 5299
  • 18 Tominaga M, Katagiri K, Azumaya I. CrystEngComm 2010; 12: 1164
  • 19 Stetter H, Schwarz M, Hirschhorn A. Angew. Chem. 1959; 71: 429
  • 20 Stetter H, Wulff C. Chem. Ber. 1960; 93: 1366
  • 21 Stetter H, Gärtner J, Tacke P. Chem. Ber. 1965; 98: 3888
  • 22 Stetter H, Krause M. Liebigs Ann. Chem. 1968; 717: 60
  • 23 Dolejšek Z, Hála S, Hanuš V, Landa S. Collect. Czech. Chem. Commun. 1966; 31: 435
  • 24 Tominaga M, Katagiri K, Azumaya I. CrystEngComm 2010; 12: 1164
  • 25 Schwenger A, Frey W, Richert C. Chem. Eur. J. 2015; 21: 8781
  • 26 Alexandre P.-E, Schwenger A, Frey W, Richert C. Chem. Eur. J. 2017; 23: 9018
  • 27 Krupp F, He S, Frey W, Richert C. Synlett 2018; 29: 1707
  • 28 Krupp F, Picher M.-I, Frey W, Plietker B, Richert C. Synlett 2021; 32: 350
  • 29 Rami F, Nowak J, Krupp F, Frey W, Richert C. Beilstein J. Org. Chem. 2021; 17: 1476
  • 30 Schwenger A, Frey W, Richert C. Angew. Chem. Int. Ed. 2016; 55: 13706
  • 31 Casco ME, Krupp F, Grätz S, Schwenger A, Damakoudi V, Richert C, Frey W, Borchardt L. Adsorption 2020; 26: 1323
  • 32 Krupp F, Frey W, Richert C. Angew. Chem. Int. Ed. 2020; 59: 15875
  • 33 Fort RC, von R Schleyer P. Chem. Rev. 1964; 64: 277
  • 34 Shernyukov AV, Salnikov GE, Krasnov VI, Genaev AM. Org. Biomol. Chem. 2022; 20: 8515
  • 35 Fokin AA, Shubina TE, Gunchenko PA, Isaev SD, Yurchenko AG, Schreiner PR. J. Am. Chem. Soc. 2002; 124: 10718
  • 36 CCDC 2251141 (solvate-free form of iTBro) and 2251142 (iTBro with encapsulated CH2Cl2) contain the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures
  • 37 Richert C, Krupp F. Synlett 2017; 28: 1763
  • 38 Schwenger A, Gerlach C, Griesser H, Richert C. J. Org. Chem. 2014; 79: 11558
  • 39 Wrona-Piotrowicz A, Makal A, Zakrzewski J. J. Org. Chem. 2020; 85: 11134