Subscribe to RSS

DOI: 10.1055/a-2720-9005
Opportunistic Osteoporosis Screening at the Spine – Clinical Applications and Diagnostic Value
Opportunistisches Osteoporose-Screening an der Wirbelsäule – Klinische Anwendungen und Diagnostischer NutzenAuthors
Fundref Information
Faculty of Medicine, Munich University of Technology — http://dx.doi.org/10.13039/501100009394; H-09; Bayerische Staatsministerium für Wirtschaft, Landesentwicklung und Energie — http://dx.doi.org/10.13039/501100020639; IOPOS LSM-2403-0013/14/15; Deutsche Forschungsgemeinschaft — http://dx.doi.org/10.13039/501100001659; 432290010
Abstract
Osteoporosis is a systemic skeletal disease with increasing prevalence. In Germany, decisions regarding basic diagnostics and therapy are currently based on the estimation of the 3-year risk for femoral neck and vertebral fractures. Reduced bone density is a measurable risk factor, for which DXA has served as the reference standard for decades. However, DXA has limitations, particularly at the spine, and is only available to a very limited extent in some regions. Many osteoporotic fractures occur in individuals who have never been screened. Vertebral fractures are the most common osteoporotic fractures in both sexes and increase the risk of subsequent fractures by a factor of two to five. In such cases, a differential diagnosis and determination of the treatment threshold should be made quickly, even if no DXA measurement is available. CT-based methods for the automated detection of vertebral fractures, combined with opportunistic bone density measurement, are increasingly used in routine clinical practice for the initial identification of high-risk patients. Here, opportunistic CT-based bone density measurements at the spine are at least equivalent to DXA in predicting vertebral fractures. For longitudinal bone density measurements, such as those used to assess the effectiveness of a therapy, DXA is currently the preferred method due to a higher reproducibility. In a controlled setting of sequential CT examinations with the same hardware and protocols, equivalent reproducibility can be assumed – however, this first must be demonstrated in studies involving bone-healthy populations. To ensure valid and comparable results from opportunistic measurements, scanner-specific calibration and, when applicable, correction for contrast agents must be performed.
Zusammenfassung
Osteoporose ist eine systemische Skeletterkrankung mit steigender Prävalenz. In Deutschland basiert die Entscheidung zur Basisdiagnostik und Therapie derzeit auf der Abschätzung des 3-Jahres-Risiko für Schenkelhals- und Wirbelkörperfrakturen. Bezogen auf die verminderte Knochendichte als messbaren Risikofaktor gilt die DXA seit Jahrzehnten als Referenzstandard. Sie weist jedoch insbesondere an der Wirbelsäule Limitationen auf und ist regional teils nur eingeschränkt verfügbar. Viele osteoporotische Frakturen treten bei Personen auf, die nie gescreent wurden. Wirbelkörperfrakturen sind bei beiden Geschlechtern am häufigsten und erhöhen das Folgefrakturrisiko um das Zwei- bis Fünffache. In solchen Fällen sollte eine Differentialdiagnostik sowie Festlegung der Therapieschwelle rasch erfolgen, auch ohne vorliegende DXA-Messung. CT-basierte Verfahren zur automatisierten Erkennung von Wirbelkörperfrakturen in Kombination mit opportunistischer Knochendichtemessung werden zunehmend in der klinischen Routine zur Erstidentifikation von Hochrisikopatienten eingesetzt. Hier ist die opportunistische CT-basierte Knochendichtemessung an der Wirbelsäule der DXA in der Frakturvorhersage von Wirbelkörperfrakturen mindestens gleichwertig. Für longitudinale Knochendichtemessungen, etwa zur Therapiekontrolle, ist die DXA aufgrund der besseren Reproduzierbarkeit derzeit grundsätzlich zu bevorzugen. Im kontrollierten Rahmen sequenzieller CT-Untersuchungen mit gleicher Hardware und Protokollen ist von gleichwertiger Reproduzierbarkeit auszugehen – was jedoch in Studien einer knochengesunden Population zu zeigen ist. Zur Sicherstellung valider und vergleichbarer opportunistischer Messergebnisse muss eine Scanner-spezifische Kalibrierung und gegebenenfalls eine Kontrastmittelkorrektur erfolgen.
Keywords
Spine - Osteoporosis - Bone mineral density - Quantitative computed tomography - Opportunistic screeningSchlüsselwörter
Wirbelsäule - Osteoporose - Knochendichte - Quantitative, Computertomographie - Opportunistisches ScreeningPublication History
Received: 05 August 2025
Accepted: 24 September 2025
Article published online:
14 November 2025
© 2025. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution License, permitting unrestricted use, distribution, and reproduction so long as the original work is properly cited. (https://creativecommons.org/licenses/by/4.0/).
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1 Rupp M, Walter N, Pfeifer C, Lang S, Kerschbaum M, Krutsch W, Baumann F, Alt V. Originalarbeit: Inzidenz von Frakturen in der Erwachsenenpopulation in Deutschland. Dtsch Arztebl Int 2021; 118: 665-669
- 2 Lindsay R, Silverman SL, Cooper C. et al. Risk of new vertebral fracture in the year following a fracture. Jama 2001; 285: 320-323
- 3 Bliuc D, Nguyen ND, Milch VE, Nguyen TV, Eisman JA, Center JR. Mortality risk associated with low-trauma osteoporotic fracture and subsequent fracture in men and women. Jama 2009; 301: 513-521
- 4 Thomasius F, Kurth A, Baum E, Drey M, Maus U, Schmidmaier R. Clinical Practice Guideline: The Diagnosis and Treatment of Osteoporosis. Dtsch Arztebl Int 2025; 122: 12-18
- 5 Löffler MT, Kallweit M, Niederreiter E, Baum T, Makowski MR, Zimmer C, Kirschke JS. Epidemiology and reporting of osteoporotic vertebral fractures in patients with long-term hospital records based on routine clinical CT imaging. Osteoporos Int 2022; 33: 685-694
- 6 Kanis JA, Norton N, Harvey NC, Jacobson T, Johansson H, Lorentzon M, McCloskey EV, Willers C, Borgström F. SCOPE 2021: a new scorecard for osteoporosis in Europe Arch Osteoporos. 2021
- 7 McCloskey E, Rathi J, Heijmans S. et al. The osteoporosis treatment gap in patients at risk of fracture in European primary care: a multi-country cross-sectional observational study. Osteoporos Int 2021; 32: 251-259
- 8 Bolotin HH. DXA in vivo BMD methodology: An erroneous and misleading research and clinical gauge of bone mineral status, bone fragility, and bone remodelling. Bone 2007; 41: 138-154
- 9 Engelke K. Quantitative Computed Tomography – Current Status and New Developments. J Clin Densitom 2017; 20: 309-321
- 10 Schuit SCE, Van Der Klift M, Weel AEAM, De Laet CEDH, Burger H, Seeman E, Hofman A, Uitterlinden AG, Van Leeuwen JPTM, Pols HAP. Fracture incidence and association with bone mineral density in elderly men and women: The Rotterdam Study. Bone 2004; 34: 195-202
- 11 Nguyen ND, Eisman JA, Center JR, Nguyen TV. Risk Factors for Fracture in Nonosteoporotic Men and Women. J Clin Endocrinol Metab 2007; 92: 955-962
- 12 Löffler MT, Sollmann N, Mei K, Valentinitsch A, Noël PB, Kirschke JS, Baum T. X-ray-based quantitative osteoporosis imaging at the spine. Osteoporos Int 2020; 31: 233-250
- 13 Link TM, Kazakia G. Update on Imaging-Based Measurement of Bone Mineral Density and Quality. Curr Rheumatol Rep 2020; 22: 13
- 14 Lenchik L, Weaver AA, Ward RJ, Boone JM, Boutin RD. Opportunistic Screening for Osteoporosis Using Computed Tomography: State of the Art and Argument for Paradigm Shift. Curr Rheumatol Rep 2018; 20: 74
- 15 Aggarwal V, Maslen C, Abel RL. et al. Opportunistic diagnosis of osteoporosis, fragile bone strength and vertebral fractures from routine CT scans; a review of approved technology systems and pathways to implementation. Ther Adv Musculoskelet Dis 2021; 13: 1-19
- 16 Löffler MT, Sekuboyina A, Jacob A, Grau A-L, Scharr A, El Husseini M, Kallweit M, Zimmer C, Baum T, Kirschke JS. A Vertebral Segmentation Dataset with Fracture Grading. Radiol Artif Intell 2020; 2: e190138
- 17 Liebl H, Schinz D, Sekuboyina A. et al. A computed tomography vertebral segmentation dataset with anatomical variations and multi-vendor scanner data. Sci Data 2021; 8: 284
- 18 Sekuboyina A, Husseini ME, Bayat A. et al. VerSe: A Vertebrae labelling and segmentation benchmark for multi-detector CT images. Med Image Anal 2021; 73: 102166
- 19 Adams JE. Advances in bone imaging for osteoporosis. Nat Rev Endocrinol 2013; 9: 28-42
- 20 Guglielmi G, Floriani I, Torri V, Li J, Van Kuijk C, Genant HK, Lang TF. Effect of spinal degenerative changes on volumetric bone mineral density of the central skeleton as measured by quantitative computed tomography. Acta radiol 2005; 46: 269-275
- 21 Engelke K. Quantitative Computertomographie. J fur Miner 2002; 9: 22-31
- 22 American College of Radiology Acr – Spr – Ssr Practice Guideline for the Performance of Quantitative Computed Tomography ( Qct ) Bone ACR Pract Guidel. 2023 15. 1-15
- 23 Engelke K, Chaudry O, Bartenschlager S. Opportunistic Screening Techniques for Analysis of CT Scans. Curr Osteoporos Rep 2023; 21: 65-76
- 24 Engelke K, Keaveny TM. Letter to the Editor Br J Radiol. 2019. 92. 20190115
- 25 Skornitzke S, Vats N, Kopytova T. et al Asynchronous calibration of quantitative computed tomography bone mineral density assessment for opportunistic osteoporosis screening: phantom‑based validation and parameter influence evaluation Sci Rep. 2022: 1-9
- 26 Boutin RD, Hernandez AM, Lenchik L, Seibert JA, Gress DA, Boone JM. CT Phantom Evaluation of 67,392 American College of Radiology Accreditation Examinations: Implications for Opportunistic Screening of Osteoporosis Using CT. AJR Am J Roentgenol 2021; 216: 447-452
- 27 Zhao Y, Li K, Duanmu Y. et al. Accuracy, Linearity and Precision of Spine QCT vBMD Phantom Measurements for Different Brands of CT Scanner: A Multicentre Study. J Clin Densitom 2022; 25: 34-42
- 28 Garner HW, Paturzo MM, Gaudier G, Pickhardt PJ, Wessell DE. Variation in Attenuation in L1 Trabecular Bone at Different Tube Voltages: Caution Is Warranted When Screening for Osteoporosis With the Use of Opportunistic CT. AJR Am J Roentgenol 2017; 208: 165-170
- 29 Boutin RD, Kaptuch JM, Bateni CP, Chalfant JS, Yao L. Influence of IV contrast administration on ct measures of muscle and bone attenuation: Implications for sarcopenia and osteoporosis evaluation. Am J Roentgenol 2016; 207: 1046-1054
- 30 Bauer JS, Henning TD, Müeller D, Lu Y, Majumdar S, Link TM. Volumetric quantitative CT of the spine and hip derived from contrast-enhanced MDCT: Conversion factors. Am J Roentgenol 2007; 188: 1294-1301
- 31 Rühling S, Navarro F, Sekuboyina A, El Husseini M, Baum T, Menze B, Braren R, Zimmer C, Kirschke JS. Automated detection of the contrast phase in MDCT by an artificial neural network improves the accuracy of opportunistic bone mineral density measurements. Eur Radiol 2022; 32: 1465-1474
- 32 Bartenschlager S, Cavallaro A, Pogarell T, Uder M, Chaudry O, Schett G, Engelke K. Impact of intravenous CT contrast agents on internal calibration techniques to determine trabecular BMD of the lumbar spine. Eur J Radiol 2025; 183: 111923
- 33 Kaesmacher J, Liebl H, Baum T, Kirschke JS. Bone mineral density estimations from routine multidetector computed tomography: A comparative study of contrast and calibration effects. J Comput Assist Tomogr 2017; 41: 217-223
- 34 Pompe E, Willemink MJ, Dijkhuis GR, Verhaar HJJ, Mohamed Hoesein FAA, de Jong PA. Intravenous contrast injection significantly affects bone mineral density measured on CT. Eur Radiol 2015; 25: 283-289
- 35 Gausden EB, Nwachukwu BU, Schreiber JJ, Lorich DG, Lane JM. Opportunistic Use of CT Imaging for Osteoporosis Screening and Bone Density Assessment. J Bone Jt Surg 2017; 99: 1580-1590
- 36 Dachverband der Deutschsprachigen Wissenschaftlichen Osteologischen Gesellschaften e.V. S3-Leitlinie Prophylaxe, Diagnostik und Therapie der Osteoporose bei postmenopausalen Frauen und bei Männern ab dem 50Lebensjahr (Kurzfassung) 2023: 1-436
- 37 Koch V, Hokamp NG, Albrecht MH. et al. Accuracy and precision of volumetric bone mineral density assessment using dual-source dual-energy versus quantitative CT: a phantom study. Eur Radiol Exp 2021; 5: 43
- 38 Bartenschlager S, Cavallaro A, Pogarell T, Chaudry O, Uder M, Khosla S, Schett G, Engelke K. Opportunistic Screening With CT: Comparison of Phantomless BMD Calibration Methods. J Bone Miner Res 2023; 38: 1689-1699
- 39 Sollmann N, Löffler MT, El Husseini M. et al. Automated Opportunistic Osteoporosis Screening in Routine Computed Tomography of the Spine: Comparison With Dedicated Quantitative CT. J Bone Miner Res 2020; 37: 1287-1296
- 40 Ramschütz C, Kloth C, Vogele D, Baum T, Rühling S, Beer M. Automated extraction of vertebral bone mineral density from imaging with various scan parameters: a cadaver study with correlation to quantitative computed tomography American College of Radiology. 2025
- 41 Löffler MT, Jacob A, Scharr A. et al. Automatic opportunistic osteoporosis screening in routine CT: improved prediction of patients with prevalent vertebral fractures compared to DXA. Eur Radiol 2021; 31: 6069-6077
- 42 Mastmeyer A, Engelke K, Meller S, Kalender W. A New 3D Method to Segment the Lumbar Vertebral Bodies and to Determine Bone Mineral Density and Geometry. 2017
- 43 Glüer CC, Blake G, Lu Y, Blunt BA, Jergas M, Genant HK. Accurate assessment of precision errors: How to measure the reproducibility of bone densitometry techniques. Osteoporos Int 1995; 5: 262-270
- 44 Tothill P, Hannan WJ. Precision and accuracy of measuring changes in bone mineral density by dual-energy X-ray absorptiometry. Osteoporos Int 2007; 18: 1515-1523
- 45 Bodden J, Prucker P, Sekuboyina A, El Husseini M, Grau K, Rühling S, Burian E, Zimmer C, Baum T, Kirschke JS. Reproducibility of CT-based opportunistic vertebral volumetric bone mineral density measurements from an automated segmentation framework Eur Radiol Exp. 2024
- 46 Glüer C-C. Monitoring Skeletal Changes by Radiological Techniques. J Bone Miner Res 1999; 14: 1952-1962
- 47 Nishiyama KK, Dall’Ara E, Engelke K. Advanced Techniques of Bone Mass Measurements and Strength in Adults In: Prim. Metab. Bone Dis. Disord. Miner. Metab. Wiley; pp. 2018: 260-271
- 48 Rühling S, Schwarting J, Froelich MF. et al. Cost-effectiveness of opportunistic QCT-based osteoporosis screening for the prediction of incident vertebral fractures. Front Endocrinol (Lausanne) 2023; 14: 1-11
- 49 Su WC, Wu WT, Peng CH, Yu TC, Lee RP, Wang JH, Yeh KT. The Short-Term Changes of the Sagittal Spinal Alignments After Acute Vertebral Compression Fracture Receiving Vertebroplasty and Their Relationship With the Change of Bathel Index in the Elderly. Geriatr Orthop Surg Rehabil 2022; 13: 1-10
- 50 Van Geel TACM, Van Helden S, Geusens PP, Winkens B, Dinant GJ. Clinical subsequent fractures cluster in time after first fractures. Ann Rheum Dis 2009; 68: 99-102
- 51 Van Helden S, Wyers CE, Dagnelie PC, Van Dongen MC, Willems G, Brink PRG, Geusens PP. Risk of falling in patients with a recent fracture. BMC Musculoskelet Disord 2007; 8: 1-7
- 52 Löffler MT, Kallweit M, Niederreiter E, Baum T, Makowski MR, Zimmer C, Kirschke JS. Epidemiology and reporting of osteoporotic vertebral fractures in patients with long-term hospital records based on routine clinical CT imaging. Osteoporos Int a J Establ as result Coop between Eur Found Osteoporos Natl Osteoporos Found USA 2022; 33: 685-694
- 53 Spångeus A, Bjerner T, Lindblom M, Götz C, Hummer A, Salzlechner C, Woisetschläger M. Breaking the silence: AI’s contribution to detecting vertebral fractures in opportunistic CT scans in the elderly – a validation study. Arch Osteoporos 2025; 20: 42
- 54 Wang X, Sanyal A, Cawthon PM. et al. Prediction of New Clinical Vertebral Fractures in Elderly Men using Finite Element Analysis of CT Scans for the Osteoporotic Fractures in Men (MrOS) Research Group. J Bone Min Res J Bone Min Res 2012; 27: 808-816
- 55 Kopperdahl DL, Aspelund T, Hoffmann PF, Sigurdsson S, Siggeirsdottir K, Harris TB, Gudnason V, Keaveny TM. Assessment of incident spine and hip fractures in women and men using finite element analysis of CT scans. J Bone Miner Res 2014; 29: 570-580
- 56 Chalhoub D, Orwoll ES, Cawthon PM. et al. Areal and volumetric bone mineral density and risk of multiple types of fracture in older men. Bone 2016; 92: 100-106
- 57 Löffler MT, Jacob A, Valentinitsch A, Rienmüller A, Zimmer C, Ryang YM, Baum T, Kirschke JS. Improved prediction of incident vertebral fractures using opportunistic QCT compared to DXA. Eur Radiol 2019; 29: 4980-4989
- 58 Johannesdottir F, Allaire B, Kopperdahl DL. et al. Bone density and strength from thoracic and lumbar CT scans both predict incident vertebral fractures independently of fracture location. Osteoporos Int 2021; 32: 261-269
- 59 Therkildsen J, Nissen L, Jørgensen HS. et al. Thoracic Bone Mineral Density Derived from Cardiac CT Is Associated with Greater Fracture Rate. Radiology 2020; 296: 499-508
- 60 Ramschütz C, Sollmann N, El Husseini M. et al. Cervicothoracic volumetric bone mineral density assessed by opportunistic QCT may be a reliable marker for osteoporosis in adults. Osteoporos Int 2025; 36: 423-433
- 61 Rühling S, Scharr A, Sollmann N. et al. Proposed diagnostic volumetric bone mineral density thresholds for osteoporosis and osteopenia at the cervicothoracic spine in correlation to the lumbar spine. Eur Radiol 2022; 32: 6207-6214
- 62 Praveen AD, Sollmann N, Baum T, Ferguson SJ, Benedikt H. CT image-based biomarkers for opportunistic screening of osteoporotic fractures: a systematic review and meta-analysis. Osteoporos Int 2024; 35: 971-996
- 63 Schmidt T, Ebert K, Rolvien T, Oehler N, Lohmann J, Papavero L, Kothe R, Amling M, Barvencik F, Mussawy H. A retrospective analysis of bone mineral status in patients requiring spinal surgery. BMC Musculoskelet Disord 2018; 19: 53
- 64 Zou D, Jiang S, Zhou S, Sun Z, Zhong W, Du G, Li W. Prevalence of Osteoporosis in Patients Undergoing Lumbar Fusion for Lumbar Degenerative Diseases: A Combination of DXA and Hounsfield Units. Spine (Phila Pa 1976) 2020; 45: E406-E410
- 65 Chin DK, Park JY, Yoon YS, Kuh SU, Jin BH, Kim KS, Cho YE. Prevalence of osteoporosis in patients requiring spine surgery: Incidence and significance of osteoporosis in spine disease. Osteoporos Int 2007; 18: 1219-1224
- 66 Dipaola CP, Bible JE, Biswas D, Dipaola M, Grauer JN, Rechtine GR. Survey of spine surgeons on attitudes regarding osteoporosis and osteomalacia screening and treatment for fractures, fusion surgery, and pseudoarthrosis. Spine J 2009; 9: 537-544
- 67 Löffler MT, Sollmann N, Burian E, Bayat A, Aftahy K, Baum T, Meyer B, Ryang Y-M, Kirschke JS. Opportunistic Osteoporosis Screening Reveals Low Bone Density in Patients With Screw Loosening After Lumbar Semi-Rigid Instrumentation: A Case-Control Study. Front Endocrinol (Lausanne) 2020; 11: 552719
- 68 Bjerke BT, Zarrabian M, Aleem IS, Fogelson JL, Currier BL, Freedman BA, Bydon M, Nassr A. Incidence of Osteoporosis-Related Complications Following Posterior Lumbar Fusion. Glob Spine J 2018; 8: 563-569
- 69 O’Leary PT, Bridwell KH, Lenke LG, Good CR, Pichelmann MA, Buchowski JM, Kim YJ, Flynn J. Risk factors and outcomes for catastrophic failures at the top of long pedicle screw constructs: A matched cohort analysis performed at a single center. Spine (Phila Pa 1976) 2009; 34: 2134-2139
- 70 Elder BD, Lo SFL, Holmes C, Goodwin CR, Kosztowski TA, Lina IA, Locke JE, Witham TF. The biomechanics of pedicle screw augmentation with cement Spine J. 2015
- 71 Krappinger D, Kastenberger TJ, Schmid R. Die Behandlung osteoporotischer Wirbelkörperfrakturen mit augmentierter Instrumentation. Oper Orthop Traumatol 2012; 24: 4-12
- 72 Wagner A, Haag E, Joerger AK, Gempt J, Krieg SM, Wostrack M, Meyer B. Cement-Augmented Carbon Fiber-Reinforced Pedicle Screw Instrumentation for Spinal Metastases: Safety and Efficacy. World Neurosurg 2021; 154: e536-e546
- 73 Okuyama K, Sato K, Abe E, Inaba H, Shimada Y, Murai H. Stability of transpedicle screwing for the osteoporotic spine: An in vitro study of the mechanical stability. Spine (Phila Pa 1976) 1993; 18: 2240-2245
- 74 Weiser L, Huber G, Sellenschloh K, Viezens L, Püschel K, Morlock MM, Lehmann W. Insufficient stability of pedicle screws in osteoporotic vertebrae: biomechanical correlation of bone mineral density and pedicle screw fixation strength. Eur Spine J 2017; 26: 2891-2897
- 75 Wittenberg RH, Shea M, Swartz DE, Lee KS, White AA, Hayes WC. Importance of bone mineral density in instrumented spine fusions. Spine (Phila Pa 1976) 1991; 16: 647-652
- 76 Löffler MT, Sollmann N, Burian E, Bayat A, Aftahy K, Baum T, Meyer B, Ryang YM, Kirschke JS. Opportunistic Osteoporosis Screening Reveals Low Bone Density in Patients With Screw Loosening After Lumbar Semi-Rigid Instrumentation: A Case-Control Study. Front Endocrinol (Lausanne) 2021; 11: 1-11
- 77 Joerger AK, Butenschoen VM, Feihl S, Rühling S, Kirschke JS, Meyer B, Krieg SM. The identification of low-pathogenic bacteria on removed spinal implants and implications for antimicrobial prophylaxis. Brain and Spine 2025; 5: 104152
- 78 Curry SJ, Krist AH, Owens DK. et al. Screening for osteoporosis to prevent fractures us preventive services task force recommendation statement. JAMA – J Am Med Assoc 2018; 319: 2521-2531
