Die Multiple Sklerose ist eine chronisch–entzündliche und demyelinisierende Erkrankung
des zentralen Nervensystems [28]. Weltweit sind mehr als 1 Million Menschen an einer Multiplen Sklerose erkrankt.
Die Inzidenz für Nordeuropa, Kanada und die USA liegt bei etwa 30–120 pro 100000 Einwohner.
Man nimmt an, dass der Multiplen Sklerose eine Autoimmunreaktion zugrunde liegt, die
in eine Entzündungsreaktion des zentralen Nervensystems mündet [17]
[33]. Zur Krankheitsmanifestation tragen neben der fehlgeleiteten Immunreaktion auch
neurodegenerative Prozesse, genetische Faktoren und Umwelteinflüsse bei.
Multiple sclerosis is a chronically inflammatory and demyelinating disease of the
central nervous system. It is assumed that multiple sclerosis is triggered by an autoimmune
reaction that provoles an inflammatory reaction of the central nervous system. The
manifestation of the disease is also additionally assisted not only by the misdirected
immunity reaction but also by neurodegenerative processes and genetic factors as well
as by environmental influences.
Key words
Multiple sclerosis - demyelination - immunopathogenesis - neurodegenerative factors
- genetic factors
Literatur
- 1
Baecher–Allan C, Hafler DA..
Human regulatory T cells and their role in autoimmune disease.
Immunol Rev.
2006;
212
203-216
- 2
Becher B, Bechmann I, Greter M..
Antigen presentation in autoimmunity and CNS inflammation: how T lymphocytes recognize
the brain.
J Mol Med.
2006;
84
532-543
- 3
Becher B, Prat A, Antel JP..
Brain–immune connection: immuno–regulatory properties of CNS–resident cells.
Glia.
2000;
29
293-304
- 4
Barouch R, Schwartz M..
Autoreactive T cells induce neurotrophin production by immune and neural cells in
injured rat optic nerve: implications for protective autoimmunity.
FASEB J.
2002;
16
1304-1306
- 5
Bettelli E, Sullivan B, Szabo SJ. et al. .
Loss of T–bet, but not STAT1, prevents the development of experimental autoimmune
encephalomyelitis.
J Exp Med.
2004;
200
79-87
- 6
Bjartmar C, Wujek JR, Trapp BD..
Axonal loss in the pathology of MS: consequences for understanding the progressive
phase of the disease.
J Neurol Sci.
2003;
206
165-171
- 7
Bö L, Geurts JJ, Mörk SJ, van der Valk P..
Grey matter pathology in multiple sclerosis.
Acta Neurol Scand Suppl.
2006;
183
48-50
- 8
Boven LA, Van Meurs M, Van Zwam M. et al. .
Myelin–laden macrophages are anti–inflammatory, consistent with foam cells in multiple
sclerosis.
Brain.
2006;
129
517-526
- 9
Burns J, Rosenzweig A, Zweiman B, Lisak RP..
Isolation of myelin basic protein–reactive T–cell lines from normal human blood.
Cell Immunol.
1983;
81
435-440
- 10
Cabarrocas J, Bauer J, Piaggio E. et al. .
Effective and selective immune surveillance of the brain by MHC class I–restricted
cytotoxic T lymphocytes.
Eur J Immunol.
2003;
33
1174-1182
- 11
Cepok S, Rosche B, Grummel V. et al. .
Short–lived plasma blasts are the main B cell effector subset during the course of
multiple sclerosis.
Brain.
2005;
128
1667-1676
- 12
Chen Y, Langrish Cl, McKenzie B. et al. .
Anti–IL–23 therapy inhibits multiple inflammatory pathways and ameliorates autoimmune
encephalomyelitis.
J Clin Invest.
2006;
116
1317-1326
- 13
Filippi M, Grossman RI..
MRI techniques to monitor MS evolution: the present and the future.
Neurology.
2002;
58
1147-1153
- 14
Frohman EM, Racke MK, Raine CS..
Multiple sclerosis – the plaque and its pathogenesis.
N Engl J Med.
2006;
354
942-955
- 15
Gay FW, Drye TJ, Dick GW, Esiri MM..
The application of multifactorial cluster analysis in the staging of plaques in early
multiple sclerosis. Identification and characterization of the primary demyelinating
lesion.
Brain.
1997;
120
1461-1483
- 16
Greter M, Heppner FL, Lemos MP. et al. .
Dendritic cells permit immune invasion of the CNS in an animal model of multiple sclerosis.
Nat Med.
2005;
11
328-334
- 17
Hemmer B, Archelos JJ, Hartung HP..
New concepts in the immunopathogenesis of multiple sclerosis.
Nat Rev Neurosci.
2002;
3
291-301
- 18
Höftberger R, Aboul–Enein F, Brueck W. et al. .
Expression of major histocompatibility complex class I molecules on the different
cell types in multiple sclerosis lesions.
Brain Pathol.
2004;
14
43-50
- 19
Kebir H, Kreymborg K, Ifergan I. et al. .
Human TH17 lymphocytes promote blood–brain barrier disruption and central nervous
system inflammation.
Nat Med.
2007;
13
1173-1175
- 20
Kuhle J, Pohl C, Mehling M. et al. .
Lack of association between antimyelin antibodies and progression to multiple sclerosis.
N Engl J Med.
2007;
356
371-378
- 21
Langrish CL, Chen Y, Blumenschein WM. et al. .
IL–23 drives a pathogenic T cell population that induces autoimmune inflammation.
J Exp Med.
2005;
201
233-240
- 22 Lassmann H.. Pathologische Anatomie und experimentelle Modelle. In: Multiple Sklerose. Kesselring
J, Hrsg. Stuttgart: Kohlhammer 2005: 20-49
- 23
Leppert D, Waubant E, Bürk MR. et al. .
Interferon beta–1b inhibits gelatinase secretion and in vitro migration of human T
cells: a possible mechanism for treatment efficacy in multiple sclerosis.
Ann Neurol.
1996;
40
846-852
- 24
Leppert D, Waubant E, Galardy R. et al. .
T cell gelatinases mediate basement membrane transmigration in vitro.
J Immunol.
1995;
154
4379-4389
- 25
Lou YH, Park KK, Agersborg S. et al. .
Retargeting T cell–mediated inflammation: a new perspective on autoantibody action.
J Immunol.
2000;
164
5251-5257
- 26
Lucchinetti C, Brück W, Parisi J. et al. .
Heterogeneity of multiple sclerosis lesions: implications for the pathogenesis of
demyelination.
Ann Neurol.
2000;
47
707-717
- 27
Mead RJ, Singhrao SK, Neal JW. et al. .
The membrane attack complex of complement causes severe demyelination associated with
acute axonal injury.
J Immunol.
2002;
168
458-465
- 28
Noseworthy JH, Lucchinetti C, Rodriguez M, Weinshenker BG..
Multiple sclerosis.
N Engl J Med.
2000;
343
938-952
- 29
Omari KM, John GR, Sealfon SC, Raine CS..
CXC chemokine receptors on human oligodendrocytes: implications for multiple sclerosis.
Brain.
2005;
128
1003-1015
- 30
Prineas JW, Barnard RO, Kwon EE. et al. .
Multiple sclerosis: remyelination of nascent lesions.
Ann Neurol.
1993;
33
137-151
- 31
Rice GP, Hartung HP, Calabresi PA..
Anti–alpha4 integrin therapy for multiple sclerosis: mechanisms and rationale.
Neurology.
2005;
64
1336-1342
- 32
Scolding N, Franklin R, Stevens S. et al. .
Oligodendrocyte progenitors are present in the normal adult human CNS and in the lesions
of multiple sclerosis.
Brain.
1998;
121
2221-2228
- 33
Sospedra M, Martin R..
Immunology of multiple sclerosis.
Annu Rev Immunol.
2005;
23
683-747
- 34
Trapp BD, Peterson J, Ransohoff RM. et al. .
Axonal transection in the lesions of multiple sclerosis.
N Engl J Med.
1998;
338
278-285
- 35
Steinman L, Zamvil SS..
How to successfully apply animal studies in experimental allergic encephalomyelitis
to research on multiple sclerosis.
Ann Neurol.
2006;
60
12-21
- 36
Stüve O, Dooley NP, Uhm JH. et al. .
Interferon beta–1b decreases the migration of T lymphocytes in vitro: effects on matrix
metalloproteinase–9.
Ann Neurol.
1996;
40
853-863
- 37
Vajkoczy P, Laschinger M, Engelhardt B..
Alpha4–integrin–VCAM–1 binding mediates G protein–independent capture of encephalitogenic
T cell blasts to CNS white matter microvessels.
J Clin Invest.
2001;
108
557-565
- 38
Viglietta V, Baecher–Allan C, Weiner HL, Hafler DA..
Loss of functional suppression by CD4+CD25+ regulatory T cells in patients with multiple
sclerosis.
J Exp Med.
2004;
199
971-979
- 39
Waxman SG, Craner MJ, Black JA..
Na+ channel expression along axons in multiple sclerosis and its models.
Trends Pharmacol Sci.
2004;
25
584-591
- 40
Wolswijk G..
Oligodendrocyte survival, loss and birth in lesions of chronic–stage multiple sclerosis.
Brain.
2000;
123
105-115
- 41
Yednock TA, Cannon C, Fritz LC. et al. .
Prevention of experimental autoimmune encephalomyelitis by antibodies against alpha
4 beta 1 integrin.
Nature.
1992;
356
63-66
Korrespondenz
Dr. med. Matthias Mehling
Neurologische Klinik und Departement Biomedizin Universitätsspital Basel
Petersgraben 4
4031 Basel
Email: Schweizmehlingm@uhbs.ch