Synlett 2008(19): 3011-3015  
DOI: 10.1055/s-0028-1087298
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

Sequential Aza-Claisen Rearrangement and Ring-Closing Metathesis as a Route to 1-Benzazepine Derivatives

Debalina Ghosh, Latibuddin Thander, Sanjay K. Ghosh, Shital K. Chattopadhyay*
Department of Chemistry, University of Kalyani, Kalyani 741235, West Bengal, India
Fax: +91(33)25828282; e-Mail: skchatto@yahoo.com;
Further Information

Publication History

Received 23 June 2008
Publication Date:
23 October 2008 (online)

Abstract

A synthetic strategy based on sequential application of aza-Claisen rearrangement and ring-closing metathesis reaction as key steps has been developed for the synthesis of various 1-benzazepine derivatives of pharmaceutical relevance.

    References and Notes

  • 1 Blakeney JS. Reid RC. Le GT. Fairlie DP. Chem. Rev.  2007,  107:  2960 
  • 2a Ogawa H. Yamashita H. Kondo K. Yamamura Y. Miyamoto H. Kan K. Kitano K. Tanaka M. Nagaya K. Nakamura S. Mori T. Tominaga M. Yabuuchi Y.
    J. Med. Chem.  1996,  39:  3547 
  • 2b Mayanoff BE. Acc. Chem. Res.  2006,  39:  831 
  • 3a Miyazaki T. Fujiki H. Yamamura Y. Nakamura S. Mori T. Cardiovasc. Drug Rev.  2007,  25:  1 
  • 3b Torisawa Y. Furuta T. Nishi T. Aki S. Minamikawa J. Bioorg. Med. Chem. Lett.  2007,  17:  6455 
  • 3c Cordero-Vargas A. Quiclet-Sire B. Zard SZ. Bioorg. Med. Chem.  2006,  14:  6165 
  • 4a Caggiano TJ. Drugs Future  2002,  27:  248 
  • 4b Mayanoff BE. Drug Discovery and Development   Vol. 1:  Chorghade MS. Wiley; New Jersey: 2006.  p.313 
  • 5a Proctor GR. Azepines, In Heterocyclic Compounds   Vol. 43:  Wiley; New York: 1984.  p.637 
  • 5b Smalley RK. Azepines, In Comprehensive Heterocyclic Chemistry   Vol. N7:  Katritzky AR. Rees CW. Pergamon Press; Oxford: 1984.  p.491 
  • 5c Yet L. Chem. Rev.  2000,  100:  2963 
  • 6 Maruoka K. Miyazaki T. Ando M. Matsumura Y. Sakane S. Hattori K. Yamamoto H. J. Am. Chem. Soc.  1983,  105:  283 
  • 7 Grunwald GL. Dahanukar VH. Ching P. Kriscione KR. J. Med. Chem.  1996,  39:  3539 
  • 8a Learmonth DA. Proctor GR. Scopes DIC. J. Chem. Soc., Perkin Trans. 1  1997,  2569 
  • 8b Ikemoto T. Ito T. Nishiguchi A. Miura S. Tomimatsu K. Org. Process Res. Dev.  2005,  9:  168 
  • 9 Fujita K. Yamamoto K. Yamaguchi R. Org. Lett.  2002,  4:  2691 
  • 10a Gibson SE. Middleton RJ. J. Chem. Soc., Chem. Commun.  1995,  1743 
  • 10b Cropper EL. White AJP. Ford A. Hii KK. J. Org. Chem.  2006,  71:  1732 
  • 11a Omar-Amrani R. Thomas A. Brenner E. Schneider R. Fort Y. Org. Lett.  2003,  5:  2311 
  • 11b Margolis BJ. Swidorski JJ. Rogers BN. J. Org. Chem.  2003,  68:  644 
  • 11c Qadir M. Priestley RE. Rising TWDF. Gelbrich T. Coles SJ. Hursthouse MB. Sheldrake PW. Whittall N. Hii KK. Tetrahedron Lett.  2003,  44:  3675 
  • 12a Kaim LE. Grimaud L. Oble J. J. Org. Chem.  2007,  72:  5835 
  • 12b Qadir M. Cobb J. Sheldrake PW. Whittall N. White AJP. Hii (Mimi) KK. Horton PN. Hursthouse MB. J. Org. Chem.  2005,  70:  1545 
  • 12c Dolman SJ. Schrock RR. Hoveyada AH. Org. Lett.  2003,  5:  4899 
  • 12d Kotha S. Sha VR. Eur. J. Org. Chem.  2008,  1054 
  • 13 For a recent review on medium-ring heterocycle formation by RCM, see: Chattopadhyay SK. Karmakar S. Biswas T. Majumdar KC. Rahaman H. Roy B. Tetrahedron  2007,  63:  3919 
  • 14a Chattopadhyay SK. Maity S. Panja S. Tetrahedron Lett.  2002,  43:  7781 
  • 14b Chattopadhyay SK. Biswas T. Neogi K. Chem. Lett.  2006,  35:  376 
  • 14c Chattopadhyay SK. Dey R. Biswas S. Synthesis  2005,  403 
  • 14d Chattopadhyay SK. Roy SP. Ghosh D. Biswas G. Tetrahedron Lett.  2006,  47:  6895 
  • 14e Chattopadhyay SK. Biswas T. Maity S. Synlett  2006,  2211 
  • For some recent reviews on Claisen rearrangement, see:
  • 15a Nubbemeyer U. Synthesis  2003,  961 
  • 15b Castro AMM. Chem. Rev.  2004,  104:  2939 
  • 16 Nubbemeyer U. Top. Curr. Chem.  2005,  244:  149 
  • 17 Krowichi K. Paillous N. Riviere M. Lattes A. J. Heterocycl. Chem.  1976,  13:  555 
  • 18 Rathore R. Saxena N. Chandrasekaran S. Synth. Commun.  1986,  16:  1493 
  • 20a O’Kennedy R. Thornes RD. Coumarins: Biology, Applications and Mode of Action   Wiley and Sons; Chichester: 1997. 
  • 20b Fylaktakidou KC. Hadjipavlou-Litina DJ. Litinas KE. Nicolaides DN. Curr. Pharm. Des.  2004,  10:  3813 
  • 21a Thorsett ED. Latimer LH. Curr. Opin. Chem. Biol.  2000,  4:  377 
  • 21b Chevalier J. Atifi S. Eyraud A. Mahamoud A. Barbe J. Pages J.-M. J. Med. Chem.  2001,  44:  4023 
  • 22a Knölker H.-J. Reddy KR. Chem. Rev.  2002,  102:  4303 
  • 22b Gallagher PT. In Science of Synthesis (Houben-Weyl)   Vol. 10:  Thomas EJ. Thieme; Stuttgart: 2001.  p.693 
  • 22c Knölker H.-J. Top. Curr. Chem.  2005,  244:  115 
19

Representative Procedure for the Sequence of Reactions in Scheme 1: N , N -Diallyl-4-methylaniline (6b)
Allyl bromide (2.7 mL, 31.4 mmol) was added dropwise to a solution of 5b (1.7 g, 15.7 mmol) and Et3N (4.4 mL, 31.4 mmol) in dry MeCN (25 mL), and the mixture was heated to reflux for 18 h. It was then allowed to come to r.t., concentrated under reduced pressure, and the residual mass was extracted with EtOAc (50 mL). The extract was washed successively with H2O (25 mL), brine (25 mL), and then dried (Na2SO4). It was filtered, concentrated under reduced pressure, and the residue was purified by chromatography over SiO2 using PE as eluent to afford 6b as a pale yellow viscous liquid (2.09 g, 71%). IR(neat): 1642, 1619, 1521, 1235, 1182 cm. ¹H NMR (300 MHz, CDCl3): δ = 7.01 (d, 2 H, J = 8.2 Hz), 6.62 (d, 2 H, J = 7.8 Hz), 5.89-5.80 (m,
2 H), 5.20-5.12 (m, 4 H), 3.88 (d, 4 H, J = 4.8 Hz), 2.23 (s, 3 H). Anal. Calcd for C13H17N: C, 83.37; H, 9.15; N, 7.48. Found: C, 83.34; H, 9.28; N, 7.39.
N ,2-Diallyl-4-methylaniline (7b)
Boron trifluoride etherate (1.8 mL, 15 mmol) was slowly added to a solution of 6b (1.9 g, 10 mmol) in PhCl (15 mL) under nitrogen, and the mixture was heated to reflux for 5 h. It was then allowed to come to r.t., quenched with sat. aq NaHCO3 solution (20 mL), and the aqueous layer was extracted with EtOAc (2 × 25 mL). The combined organic mixture was washed successively with H2O (25 mL), brine (25 mL), and then dried (Na2SO4). It was filtered, concentrated under reduced pressure, and the residue was purified by chromatography over SiO2 using PE as eluent to give starting 6b (0.17g, 9%) followed by the product 7b (1.31g, 69%) as a pale yellow viscous liquid. IR(neat): 3442, 3387, 1636, 1618, 1515, 1313 cm. ¹H NMR (300 MHz, CDCl3): δ = 6.94 (d, 1 H, J = 8.1 Hz), 6.87 (s, 1 H), 6.55 (d, 1 H, J = 8.1 Hz), 5.98-5.92 (m, 2 H), 5.28-5.06 (m, 5 H), 3.76 (dt, 2 H, J = 5.4, 1.5 Hz), 3.28 (d, 2 H, J = 6.2 Hz), 2.24 (s, 3 H). Anal. Calcd for C13H17N: C, 83.37; H, 9.15; N, 7.48. Found: C, 83.40; H, 9.26; N, 7.43.
N -Allyl- N -(2-allyl-4-methylphenyl)-4-methylbenzene-sulfonamide (8b)
p-Toluenesulfonyl chloride (1.71 g, 9 mmol) was added to a solution of 7b (1.1g, 5.9 mmol) and Et3N (1.7 mL, 12 mmol) in dry CH2Cl2 (20 mL), and the reaction mixture was stirred at r.t. for 12 h. It was then diluted with CH2Cl2 (20 mL), and the solution was washed successively with HCl (1 N, 2 × 25 mL), H2O (25 mL), brine (25 mL), and then dried (Na2SO4). It was filtered, concentrated under reduced pressure, and the residue was purified by chromatography over SiO2 using EtOAc-PE (1:19) as eluent to give the product as a colorless viscous liquid (1.7 g, 85%). IR (CHCl3): 1638, 1598, 1497, 1349, 1219, 1164, 1062 cm. ¹H NMR (300 MHz, CDCl3): δ = 7.58 (d, 2 H, J = 8.2 Hz), 7.26 (d, 2 H, J = 8.1 Hz), 7.09 (s, 1 H), 6.85 (d, 1 H, J = 7.9 Hz), 6.46 (d, 1 H, J = 8.0 Hz), 5.97-5.84 (m, 1 H), 5.80-5.68 (m, 1 H), 5.14-5.08 (m, 2 H), 5.01-4.93 (m, 2 H), 4.30 (dd, 1 H, J = 14.0, 5.6 Hz), 3.85 (dd, 1 H, J = 14.0, 7.6 Hz), 3.55 (dd, 1 H, J = 15.5, 6.5 Hz), 3.45 (dd, 1 H, J = 15.4, 6.5 Hz), 2.44 (s, 3 H), 2.30 (s, 3 H). Anal. Calcd for C20H23NO2S: C, 70.35; H, 6.79; N, 4.10. Found: C, 70.48; H, 6.88; N, 4.29.
7-Methyl-1-tosyl-2,5-dihydro-1 H -benzo[ b ]azepine (10b)
Catalyst 9 (14 mg, 5 mol%) was added to a solution of 8b (0.11g, 0.32 mmol) in dry, degassed CH2Cl2 (30 mL) under nitrogen, and the reaction mixture was stirred at r.t. for 2 h. It was then concentrated under reduced pressure and the residue was chromatographed over SiO2 using EtOAc-PE (1:13) as eluent to give the product 10b (83 mg, 83%) as a colorless solid; mp 114 ˚C. IR (CHCl3): 1598, 1496, 1343, 1157 cm. ¹H NMR (300 MHz, CDCl3): δ = 7.64 (d, 2 H, J = 8.2 Hz), 7.24 (d, 2 H, J = 8.5 Hz), 7.16 (d, 1 H, J = 8.0 Hz), 7.00 (d, 1 H, J = 7.9 Hz), 6.87 (s, 1 H), 5.66-5.60 (m,
1 H), 5.45-5.41 (m, 1 H), 4.35 (br s, 2 H), 2.92 (br s, 2 H), 2.42 (s, 3 H), 2.29 (s, 3 H). ¹³C NMR (75 MHz, CDCl3): δ = 143.1, 140.8, 138.7, 138.3, 136.0, 129.9, 129.7, 129.4, 128.0, 127.0, 125.8, 125.3, 49.1, 32.2, 21.5, 21.0. Anal. Calcd for C18H19NO2S: C, 68.98; H, 6.11; N, 4.47. Found: C, 69.13; H, 6.18; N, 4.58. MS (TOFMS ES+): m/z = 336 [M+ + Na].
Selected Data Compound 10c: Mp 128 ˚C. IR (KBr): 1602, 1500, 1341, 1159 cm. ¹H NMR (300 MHz, CDCl3): δ = 7.63 (d, 2 H, J = 8.2 Hz), 7.24 (d, 2 H, J = 8.1 Hz), 7.19 (d, 1 H, J = 8.8 Hz), 6.71 (dd, 1 H, J = 8.6, 2.9 Hz), 6.58 (d, 1 H, J = 2.7 Hz), 5.65-5.59 (m, 1 H), 5.45-5.41 (m, 1 H), 4.35 (br s, 2 H), 3.78 (s, 3 H), 2.88 (br s, 2 H), 2.42 (s, 3 H). ¹³C NMR (75 MHz, CDCl3): δ = 159.2, 143.1, 142.5, 138.6, 131.2, 131.1, 129.4, 127.0, 125.9, 124.9, 114.6, 112.1, 55.3, 49.2, 32.4, 21.5. Anal. Calcd for C18H19NO3S: C, 65.63; H, 5.81; N, 4.25. Found: C, 65.80; H, 5.98; N, 4.43. MS (TOFMS ES+):
m/z = 352 [M+ + Na].
Compound 12b: Mp 135 ˚C. IR (KBr): 1715, 1596, 1491, 1352, 1168 cm. ¹H NMR (300 MHz, CDCl3): δ = 7.91 (d, 2 H, J = 8.3 Hz), 7.41 (d, 1 H, J = 8.0 Hz), 7.32 (d, 2 H, J = 8.1 Hz), 7.18 (d, 1 H, J = 8.1 Hz), 7.03 (s, 1 H), 2.48-2.44 (m, 2 H), 2.38 (s, 3 H), 2.23 (s, 3 H), 2.10-2.04 (m,
3 H), 1.79-1.77 (m, 1 H). ¹³C NMR (75 MHz, CDCl3): δ = 172.7, 144.8, 139.4, 136.6, 135.8, 133.4, 129.7, 129.3, 129.1, 128.8, 127.9, 34.4, 29.1, 27.3, 21.7, 21.1. Anal. Calcd for C18H19NO3S: C, 65.63; H, 5.81; N, 4.25. Found: C, 65.78; H, 6.04; N, 4.48. MS (TOFMS ES+): m/z = 352 [M+ + Na].
Compound 16: IR (CHCl3): 1735, 1597, 1342, 1160, 1109 cm. ¹H NMR (300 MHz, CDCl3): δ = 7.91 (d, 1 H, J = 10.0 Hz), 7.68 (d, 2 H, J = 8.2 Hz), 7.35 (d, 1 H, J = 8.8 Hz), 7.30 (d, 2 H, J = 8.1 Hz), 7.17 (d, 1 H, J = 8.7 Hz), 6.43 (d, 1 H, J = 9.9 Hz), 5.79-5.71 (m, 1 H), 5.54-5.50 (m, 1 H), 4.37 (br s, 2 H), 3.34 (d, 2 H, J = 4.0 Hz), 2.45 (s, 3 H). ¹³C NMR (75 MHz, CDCl3): δ = 159.7, 153.7, 143.6, 140.3, 139.6, 138.0, 135.2, 132.6, 129.7, 126.9, 126.7, 123.5, 116.5, 116.3, 115.5, 48.7, 24.6, 21.4. Anal. Calcd for C20H17NO4S: C, 65.38; H, 4.66; N, 3.81. Found: C, 65.66; H, 4.83; N, 3.96. MS (TOFMS ES+): m/z (%) = 390(100) [M + Na], 368(41) [M + H].
Compound 20: mp 224 ˚C IR (KBr): 1654, 1578, 1455, 1333, 1158, 1123 cm. ¹H NMR (300 MHz, CDCl3): δ = 7.90 (d, 1 H, J = 10.0 Hz), 7.68 (d, 2 H, J = 8.2 Hz), 7.47 (d, 1 H, J = 9.0 Hz), 7.30-7.22 (m, 3 H), 6.72 (d, 1 H, J = 10.0 Hz), 5.80-5.73 (m, 1 H), 5.52-5.48 (m, 1 H), 4.13 (br s, 2 H), 3.71 (s, 3 H), 3.35 (d, 2 H, J = 4.3 Hz), 2.44 (s,
3 H). ¹³C NMR (75 MHz, CDCl3): δ = 161.6, 143.5, 140.2, 140.1, 138.4, 134.5, 133.4, 131.6, 129.7, 126.9, 124.1, 121.7, 118.1, 113.2, 49.0, 29.8, 24.6, 21.5. Anal. Calcd for C21H20N2O3S: C, 66.29; H, 5.30; N, 7.36. Found: C, 66.36; H, 5.41; N, 7.24. MS (TOFMS ES+): m/z = 403 [M + Na].