TumorDiagnostik & Therapie 2009; 30(5): 262-268
DOI: 10.1055/s-0028-1109547
Originalarbeit

© Georg Thieme Verlag KG Stuttgart · New York

Der Einfluss von Bortezomib auf den Knochenstoffwechsel beim multiplen Myelom

The Effect of Bortezomib on Bone Metabolism in Multiple MyelomaO. Sezer1
  • 1Hämatologie und Onkologie, Charité – Universitätsmedizin Berlin
Weitere Informationen

Publikationsverlauf

Publikationsdatum:
19. Oktober 2009 (online)

Zusammenfassung

Die erhöhte Knochenresorption ist ein Hauptmerkmal des multiplen Myeloms und kann die Lebensqualität der Patienten maßgeblich beeinträchtigen. Bei der überwiegenden Mehrzahl der Myelompatienten sind Osteolysen festzustellen, die Schmerzen auslösen und ein erhöhtes Frakturrisiko verursachen. Die Knochendestruktion entsteht beim multiplen Myelom durch ein gestörtes Gleichgewicht der Aktivität der knochenaufbauenden Osteoblasten und der knochenabbauenden Osteoklasten. Die zellulären Interaktionen sowie Dysregulation von Zytokinen im Knochenmarkmikroenvironment sind an der Knochendestruktion beteiligt. Die Behandlung mit Bisphosphonaten hemmt zwar die osteoklasteninduzierte Knochenresorption, ist aber nicht in der Lage, die beim multiplen Myelom beobachtete Hemmung der Differenzierung der mesenchymalen Stammzellen zu Osteoblasten auszugleichen. Bortezomib ist die wirksamste Einzelsubstanz in der Therapie des multiplen Myeloms. Präklinische Untersuchungen zeigen, dass der Proteasominhibitor Bortezomib darüber hinaus der myelominduzierten Knochendestruktion entgegenwirken kann. Bortezomib hemmt einerseits die Osteoklastenaktivität und fördert andererseits die Osteoblastenfunktion und weist somit Eigenschaften auf, die für die Therapie der Knochenbeteiligung beim multiplen Myelom ideal erscheinen. Bortezomib könnte somit nicht nur in der Behandlung gegen die Tumorzellen, sondern auch in der Behandlung der Knochendestruktion eine wesentliche Rolle spielen. Klinische Studien sind jedoch notwendig, um diese Effekte hinsichtlich ihrer klinischen Relevanz zu untersuchen. Internationale prospektive klinische Studien wurden begonnen, um dies in einem randomisierten Studiendesign zu untersuchen.

Abstract

Increased bone resorption is one of the main characteristics of multiple myeloma and can considerably impair the quality of life of the patients. The vast majority of myeloma patients have lytic bone lesions which lead to pain and an increased risk of fractures. Bone destruction in multiple myeloma patients is caused by an imbalance of the activity of bone-building osteoblasts and bone-resorbing osteoclasts. Cellular interactions, as well as dysregulation of cytokines in the bone marrow microenvironment are involved in bone destruction. Treatment with bisphosphonates inhibits osteoclast-induced bone resorption, but it cannot compensate for the inhibited differentiation of mesenchymal stem cells into osteoblasts observed in multiple myeloma patients. Bortezomib is the most efficient single substance for the treatment of multiple myeloma. Preclinical tests show that the proteasome inhibitor Bortezomib can furthermore counteract the myeloma-induced bone destruction. On the one hand, Bortezomib inhibits osteoclast activity and, on the other hand, promotes osteoblast function and thus has properties that seem to be ideal for the therapy of bone disease in multiple myeloma patients. Bortezomib might play an important part not only in the treatment against the tumour cells, but also in the treatment of bone destruction. However, clinical studies have to be carried out in order to examine these effects with a view to their clinical relevance. International prospective randomized clinical trials have already been started.

Literatur

  • 1 Sezer O. Myeloma Bone Disease: Recent Advances in Biology, Diagnosis, and Treatment.  Oncologist. 2009;  14 (3) 276-283
  • 2 Sezer O. Multiples Myelom und verwandte Plasmazellerkrankungen. Therapie-Handbuch. Elsevier-Verlag 2008
  • 3 Richardson P G, Sonneveld P, Schuster M W. et al . Bortezomib or high-dose dexamethasone for relapsed multiple myeloma.  N Engl J Med. 2005;  352 (24) 2487-2498
  • 4 San Miguel J F, Schlag R, Khuageva N K. et al . Bortezomib plus Melphalan and Prednisone for Initial Treatment of Multiple Myeloma.  N Engl J Med. 2008;  359 (9) 906-917
  • 5 Jakob C, Egerer K, Liebisch P. et al . Circulating proteasome levels are an independent prognostic factor for survival in multiple myeloma.  Blood. 2007;  109 (5) 2100-2105
  • 6 Garrett I R, Chen D, Gutierrez G. et al . Selective inhibitors of the osteoblast proteasome stimulate bone formation in vivo and in vitro.  The Journal of Clinical Investigation. 2003;  111 1771-1782
  • 7 Zavrski I, Krebbel H, Wildemann B. et al . Proteasome inhibitors abrogate osteoclast differentiation and osteoclast function.  Biochem Biophys Res Commun. 2005;  333 (1) 200-205
  • 8 Coleman R E. Skeletal complications of malignancy.  Cancer. 1997;  80 (Suppl 8) 1588-1594
  • 9 Sezer O. Bisphosphonate beim Multiplen Myelom. Supportive Therapie in der Onkologie. Zuckschwerdt Verlag 2008
  • 10 Cocks K, Cohen D, Wisloff F. et al . An international field study of the reliability and validity of a disease-specific questionnaire module (the QLQ-MY20) in assessing the quality of life of patients with multiple myeloma.  Eur J Cancer. 2007;  43 (11) 1670-1678
  • 11 Jakob C, Sterz J, Liebisch P. et al . Incorporation of the bone marker carboxy-terminal telopeptide of type-1 collagen improves prognostic information of the International Staging System in newly diagnosed symptomatic multiple myeloma.  Leukemia. 2008;  22 (9) 1767-1772
  • 12 Sezer O, Heider U, Zavrski I. et al . RANK ligand and osteoprotegerin in myeloma bone disease.  Blood. 2003;  101 (6) 2094-2098
  • 13 Heider U, Fleissner C, Zavrski I. et al . Bone markers in multiple myeloma.  Eur J Cancer. 2006;  42 (11) 1544-1553
  • 14 Lentzsch S, Ehrlich L A, Roodman G D. Pathophysiology of multiple myeloma bone disease.  Hematol Oncol Clin North Am. 2007;  21 (6) 1035-49, viii
  • 15 Hideshima T, Mitsiades C S, Tonon G. et al . Understanding multiple myeloma pathogenesis in the bone marrow to identify new therapeutic targets.  Nature Reviews Cancer. 2007;  7 585-598
  • 16 Heider U, Langelotz C, Jakob C. et al . Expression of receptor activator of nuclear factor kappaB ligand on bone marrow plasma cells correlates with osteolytic bone disease in patients with multiple myeloma.  Clin Cancer Res. 2003;  9 (4) 1436-1440
  • 17 Heider U, Hofbauer L C, Zavrski I. et al . Novel aspects of osteoclast activation and osteoblast inhibition in myeloma bone disease.  Biochem Biophys Res Commun. 2005;  338 (2) 687-693
  • 18 Yaccoby S, Pearse R N, Johnson C L. et al . Myeloma interacts with the bone marrow microenvironment to induce osteoclastogenesis and is dependent on osteoclast activity.  Br J Haematol. 2002;  116 (2) 278-290
  • 19 Hecht M, Metzler von I, Sack K. et al . Interactions of myeloma cells with osteoclasts promote tumour expansion and bone degradation through activation of a complex signalling network and upregulation of cathepsin K, matrix metalloproteinases (MMPs) and urokinase plasminogen activator (uPA).  Exp Cell Res. 2008;  314 (5) 1082-1093
  • 20 Bataille R, Chappard D, Marcelli C. et al . Recruitment of new osteoblasts and osteoclasts is the earliest critical event in the pathogenesis of human multiple myeloma.  J Clin Invest. 1991;  88 (1) 62-66
  • 21 Hecht M, Heider U, Kaiser M. et al . Osteoblasts promote migration and invasion of myeloma cells through upregulation of matrix metalloproteinases, urokinase plasminogen activator, hepatocyte growth factor and activation of p38 MAPK.  Br J Haematol. 2007;  138 (4) 446-458
  • 22 Tian E, Zhan F, Walker R. et al . The role of the Wnt-signaling antagonist DKK1 in the development of osteolytic lesions in multiple myeloma.  N Engl J Med. 2003;  349 (26) 2483-2494
  • 23 Kaiser M, Mieth M, Liebisch P. et al . Serum concentrations of DKK-1 correlate with the extent of bone disease in patients with multiple myeloma.  Eur J Haematol. 2008;  80 (6) 490-494
  • 24 Yaccoby S, Ling W, Zhan F. et al . Antibody-based inhibition of DKK1 suppresses tumor-induced bone resorption and multiple myeloma growth in vivo.  Blood. 2007;  109 (5) 2106-2111
  • 25 Giuliani N, Rizzoli V, Roodman G D. Multiple myeloma bone disease: pathophysiology of osteoblast inhibition.  Blood. 2006;  108 3992-3996
  • 26 Moulopoulos L A, Dimopoulos M A, Smith T L. et al . Prognostic significance of magnetic resonance imaging in patients with asymptomatic multiple myeloma.  J Clin Oncol. 1995;  13 (1) 251-256
  • 27 Walker R, Barlogie B, Haessler J. et al . Magnetic resonance imaging in multiple myeloma: diagnostic and clinical implications.  J Clin Oncol. 2007;  25 (9) 1121-1128
  • 28 Jakob C, Zavrski I, Heider U. et al . Bone resorption parameters [carboxy-terminal telopeptide of type-I collagen (ICTP), amino-terminal collagen type-I telopeptide (NTx), and deoxypyridinoline (Dpd)] in MGUS and multiple myeloma.  Eur J Haematol. 2002;  69 (1) 37-42
  • 29 Yeh H S, Berenson J R. Treatment for myeloma bone disease.  Clin Cancer Res. 2006;  12 (20 Pt 2) 6279 s-6284 s
  • 30 Coleman R E, Major P, Lipton A. et al . Predictive value of bone resorption and formation markers in cancer patients with bone metastases receiving the bisphosphonate zoledronic acid.  J Clin Oncol. 2005;  23 (22) 4925-4935
  • 31 Bamias A, Kastritis E, Bamia C. et al . Osteonecrosis of the jaw in cancer after treatment with bisphosphonates: incidence and risk factors.  J Clin Oncol. 2005;  23 (34) 8580-8587
  • 32 Ripamonti C I, Maniezzo M, Campa T. et al . Decreased occurrence of osteonecrosis of the jaw after implementation of dental preventive measures in solid tumour patients with bone metastases treated with bisphosphonates. The experience of the National Cancer Institute of Milan.  Ann Oncol. 2009;  20 (1) 137-145
  • 33 Heider U, Kaiser M, Muller C. et al . Bortezomib increases osteoblast activity in myeloma patients irrespective of response to treatment.  Eur J Haematol. 2006;  77 (3) 233-238
  • 34 Giuliani N, Morandi F, Tagliaferri S. et al . The proteasome inhibitor bortezomib affects osteoblast differentiation in vitro and in vivo in multiple myeloma patients.  Blood. 2007;  110 (1) 334-338
  • 35 Terpos E, Dimopoulos M A, Sezer O. The effect of novel anti-myeloma agents on bone metabolism of patients with multiple myeloma.  Leukemia. 2007;  21 (9) 1875-1884
  • 36 Terpos E, Sezer O, Croucher P. et al . Myeloma bone disease and proteasome inhibition therapies.  Blood. 2007;  110 (4) 1098-1104
  • 37 Metzler von I, Krebbel H, Hecht M. et al . Bortezomib inhibits human osteoclastogenesis.  Leukemia. 2007;  21 (9) 2025-2034
  • 38 Boissy P, Andersen T L, Lund T. et al . Pulse treatment with the proteasome inhibitor bortezomib inhibits osteoclast resorptive activity in clinically relevant conditions.  Leuk Res. 2008;  32 (11) 1661-1668
  • 39 Roodman G D. Bone building with bortezomib.  J Clin Invest. 2008;  118 (2) 462-464
  • 40 Uy G L, Trivedi R, Peles S. et al . Bortezomib inhibits osteoclast activity in patients with multiple myeloma.  Clin Lymphoma Myeloma. 2007;  7 (9) 587-589
  • 41 Terpos E, Heath D J, Rahemtulla A. et al . Bortezomib reduces serum dickkopf-1 and receptor activator of nuclear factor-kappaB ligand concentrations and normalises indices of bone remodelling in patients with relapsed multiple myeloma.  Br J Haematol. 2006;  135 (5) 688-692
  • 42 Terpos E, Delimpasi S, Anargyrou K. et al .The Combination of Bortezomib, Doxorubicin, and Dexamethasone (PAD) Is an Effective Regimen for High Risk, Newly Diagnosed, Patients with Multiple Myeloma, Reduces Bone Resorption and Normalizes Angiopoietin-1 to Angiopoietin-2 Ratio. ASH Annual Meeting Abstracts 110[11] 16.11.2007: 3596.
  • 43 Terpos E, Kastritis E, Roussou M. et al . The combination of bortezomib, melphalan, dexamethasone and intermittent thalidomide is an effective regimen for relapsed/refractory myeloma and is associated with improvement of abnormal bone metabolism and angiogenesis.  Leukemia. 2008;  22 (12) 2247-2256
  • 44 Oyajobi B O, Garrett I R, Gupta A. et al . Stimulation of new bone formation by the proteasome inhibitor, bortezomib: implications for myeloma bone disease.  Br J Haematol. 2007;  139 (3) 434-438
  • 45 Mukherjee S, Raje N, Schoonmaker J A. et al . Pharmacologic targeting of a stem/progenitor population in vivo is associated with enhanced bone regeneration in mice.  J Clin Invest. 2008;  118 (2) 491-504
  • 46 Yaccoby S, Wezeman M J, Zangari M. et al . Inhibitory effects of osteoblasts and increased bone formation on myeloma in novel culture systems and a myelomatous mouse model.  Haematologica. 2006;  91 (2) 192-199
  • 47 Pennisi A, Li X, Ling W. et al . The proteasome inhibitor, bortezomib suppresses primary myeloma and stimulates bone formation in myelomatous and nonmyelomatous bones in vivo.  Am J Hematol. 2009;  84 (1) 6-14
  • 48 Weinstein R S, Jilka R L, Parfitt A M. et al . Inhibition of osteoblastogenesis and promotion of apoptosis of osteoblasts and osteocytes by glucocorticoids. Potential mechanisms of their deleterious effects on bone.  J Clin Invest. 1998;  102 (2) 274-282
  • 49 Ohnaka K, Tanabe M, Kawate H. et al . Glucocorticoid suppresses the canonical Wnt signal in cultured human osteoblasts.  Biochem Biophys Res Commun. 2005;  329 (1) 177-181
  • 50 Soe K, Andersen T L, Kupisiewicz K. et al .Bortezomib Protects Osteoblasts from Glucocorticoid-Induced Damage, and Enhances Glucocorticoid-Induced Toxicity Against Osteoclasts and Myeloma Cells. ASH Annual Meeting Abstracts 11 0[11] Ref Type: Abstract 16.11.2007: 3523
  • 51 Shimazaki C, Uchida R, Nakano S. et al . High serum bone-specific alkaline phosphatase level after bortezomib-combined therapy in refractory multiple myeloma: possible role of bortezomib on osteoblast differentiation.  Leukemia. 2005;  19 (6) 1102-1103
  • 52 Zangari M, Esseltine D, Lee C K. et al . Response to bortezomib is associated to osteoblastic activation in patients with multiple myeloma.  Br J Haematol. 2005;  131 (1) 71-73
  • 53 Zangari M, Esseltine D, Cavallo F. et al . Predictive value of alkaline phosphatase for response and time to progression in bortezomib-treated multiple myeloma patients.  Am J Hematol. 2007;  82 (9) 831-833
  • 54 Ozaki S, Tanaka O, Fujii S. et al . Therapy with bortezomib plus dexamethasone induces osteoblast activation in responsive patients with multiple myeloma.  Int J Hematol. 2007;  86 (2) 180-185
  • 55 Zangari M, Cavallo F, Suva L. et al .Prospective Evaluation of the Bone Anabolic Effect of Bortezomib in Relapsed Multiple Myeloma (MM) Patients. ASH Annual Meeting Abstracts 11 0[11] 16.11.2007: 2719

Prof. Dr. Orhan Sezer

Hämatologie und Onkologie, Charité – Universitätsmedizin Berlin

Charitéplatz 1

10117 Berlin

Telefon: ++ 49/30/4 50 61 31 05

Fax: ++ 49/30/4 50 52 79 07

eMail: sezer@charite.de

    >