Zusammenfassung
Die Leberfibrose ist die gemeinsame Endstrecke chronischer Lebererkrankungen und für
einen großen Teil der Mortalität und Morbidität der Erkrankungen verantwortlich. In
den letzten Jahren zeigte sich, dass Chemokine und ihre Rezeptoren eine Rolle in der
Entwicklung einer Leberfibrose spielen. Hierbei handelt es sich um eine Familie chemotaktischer
und immunmodulierender Moleküle, die über G-Protein gekoppelte Rezeptoren auf Zielzellen
wirken. Neben der klassischen Funktion einer Immunzellrekrutierung in die Leber konnten
auch direkte Effekte der Chemokine auf hepatische Sternzellen nachgewiesen werden.
Bisher sind 9 der 19 bekannten Chemokinrezeptoren auf hepatischen Sternzellen charakterisiert
worden. Ihre Stimulation mit spezifischen Liganden führt zumeist zu einer Migration
und Proliferation dieser Zellen, was überwiegend für profibrotische Effekte von Chemokinen
spricht. Bisher wurden nur für den Chemokinrezeptor CXCR3 auch antifibrotische Eigenschaften
auf hepatischen Sternzellen beschrieben. Hepatische Sternzellen sind jedoch nicht
nur das Ziel von Chemokinen, sondern sie sind auch zur Sekretion diverser Chemokine
in der Lage. Hierdurch wird u. a. die Interaktion der Zellen mit infiltrierenden Immunzellen
in der Leber vermittelt. Die weitere Aufklärung dieser Interaktionen kann auf lange
Sicht neue Interventionsmöglichkeiten zur Therapie fibrosierender Lebererkrankungen
eröffnen. Hierzu scheinen Chemokine besonders geeignet, da bereits erste orale Chemokinrezeptorantagonisten
zugelassen wurden.
Abstract
Liver fibrosis is the common sequel of chronic liver diseases and is associated with
high morbidity and mortality in affected patients. In recent years, the contribution
of chemokines and their receptors to liver fibrosis has been delineated. Chemokines
are a family of chemotactic and immunomodulatory molecules that act through different
G-protein coupled receptors on target cells. Apart from their classical function of
regulating immune cell recruitment during chronic liver injury, chemokines can directly
affect the function of hepatic stellate cells within the liver. Up to now, nine of
the 19 known chemokine receptors have been characterised on stellate cells. Stimulation
of most of these receptors with specific ligands leads to increased migration and
proliferation of stellate cells, suggesting predominantly profibrotic effects of chemokines.
The only chemokine receptor with potential antifibrotic effects identified so far
is CXCR3. Notably, hepatic stellate cells are not only a target but also a source
of chemokines which contributes to the direct interaction between stellate cells and
other cells during fibrogenesis. The further characterisation of this interaction
will yield new therapeutic options for the treatment of chronic liver diseases. In
this respect chemokines are a valuable target as oral chemokine receptor antagonists
have already been licensed for human use.
Schlüsselwörter
Leber - Virushepatitis - Hepatitis C
Key words
liver - viral hepatitis - hepatitis C
Literatur
- 1
Luster A D.
Chemokines – chemotactic cytokines that mediate inflammation.
N Engl J Med.
1998;
338
436-445
- 2
Rot A, Andrian U H.
Chemokines in innate and adaptive host defense: basic chemokinese grammar for immune
cells.
Annu Rev Immunol.
2004;
22
891-928
- 3
Charo I F, Ransohoff R M.
The many roles of chemokines and chemokine receptors in inflammation.
N Engl J Med.
2006;
354
610-621
- 4
Mantovani von A, Bonecchi R, Locati M.
Tuning inflammation and immunity by chemokine sequestration: decoys and more.
Nat Rev Immunol.
2006;
6
907-918
- 5
Berres M L, Trautwein C, Zaldivar M M. et al .
The chemokine scavenging receptor D 6 limits acute toxic liver injury in vivo.
Biol Chem.
2009;
390
1039-1045
- 6
Mantovani A, Locati M, Vecchi A. et al .
Decoy receptors: a strategy to regulate inflammatory cytokines and chemokines.
Trends Immunol.
2001;
22
328-336
- 7
Bonecchi R, Galliera E, Borroni E M. et al .
Chemokines and chemokine receptors: an overview.
Front Biosci.
2009;
14
540-551
- 8
Sayana S, Khanlou H.
Maraviroc: a new CCR5 antagonist.
Expert Rev Anti Infect Ther.
2009;
7
9-19
- 9
Kuboki S, Shin T, Huber N. et al .
Hepatocyte signaling through CXC chemokine receptor-2 is detrimental to liver recovery
after ischemia/reperfusion in mice.
Hepatology.
2008;
48
1213-1223
- 10
Krohn N, Kapoor S, Enami Y. et al .
Hepatocyte transplantation-induced liver inflammation is driven by cytokines-chemokines
associated with neutrophils and Kupffer cells.
Gastroenterology.
2009;
136
1806-1817
- 11
Barbi J, Oghumu S, Rosas L E. et al .
Lack of CXCR3 delays the development of hepatic inflammation but does not impair resistance
to Leishmania donovani.
J Infect Dis.
2007;
195
1713-1717
- 12
Bataller R, North K E, Brenner D A.
Genetic polymorphisms and the progression of liver fibrosis: a critical appraisal.
Hepatology.
2003;
37
493-503
- 13
Gressner A M, Weiskirchen R.
Modern pathogenetic concepts of liver fibrosis suggest stellate cells and TGF-beta
as major players and therapeutic targets.
J Cell Mol Med.
2006;
10
76-99
- 14
Wasmuth H E, Tag C G, Van de Leur E. et al .
The Marburg I variant (G534E) of the factor VII-activating protease determines liver
fibrosis in hepatitis C infection by reduced proteolysis of platelet-derived growth
factor BB.
Hepatology.
2009;
49
775-780
- 15
Seki E, De Minicis S, Gwak G Y. et al .
CCR1 and CCR5 promote hepatic fibrosis in mice.
J Clin Invest.
2009;
119
1858-1870
- 16
Ajuebor M N, Wondimu Z, Hogaboam C M. et al .
CCR5 deficiency drives enhanced natural killer cell trafficking to and activation
within the liver in murine T cell-mediated hepatitis.
Am J Pathol.
2007;
170
1975-1988
- 17
Marra F, Grandaliano G, Valente A J. et al .
Thrombin stimulates proliferation of liver fat-storing cells and expression of monocyte
chemotactic protein-1: potential role in liver injury.
Hepatology.
1995;
22
780-787
- 18
Marra F, DeFranco R, Grappone C. et al .
Increased expression of monocyte chemotactic protein-1 during active hepatic fibrogenesis:
correlation with monocyte infiltration.
Am J Pathol.
1998;
152
423-430
- 19
Ramm G A, Shepherd R W, Hoskins A C. et al .
Fibrogenesis in pediatric cholestatic liver disease: role of taurocholate and hepatocyte-derived
monocyte chemotaxis protein-1 in hepatic stellate cell recruitment.
Hepatology.
2009;
49
533-544
- 20
Seki E, De Minicis S, Osterreicher C H. et al .
TLR4 enhances TGF-beta signaling and hepatic fibrosis.
Nat Med.
2007;
13
1324-1332
- 21
Kruglov E A, Nathanson R A, Nguyen T. et al .
Secretion of MCP-1 /CCL2 by bile duct epithelia induces myofibroblastic transdifferentiation
of portal fibroblasts.
Am J Physiol Gastrointest Liver Physiol.
2006;
290
G765-G771
- 22
Marra F, Valente A J, Pinzani M. et al .
Cultured human liver fat-storing cells produce monocyte chemotactic protein-1. Regulation
by proinflammatory cytokines.
J Clin Invest.
1993;
92
1674-1680
- 23
Marra F, Romanelli R G, Giannini C. et al .
Monocyte chemotactic protein-1 as a chemoattractant for human hepatic stellate cells.
Hepatology.
1999;
29
140-148
- 24
Seki E, Minicis de S, Inokuchi S. et al .
CCR2 promotes hepatic fibrosis in mice.
Hepatology.
2009;
50
185-197
- 25
Cassiman D, Libbrecht L, Desmet V. et al .
Hepatic stellate cell/myofibroblast subpopulations in fibrotic human and rat livers.
J Hepatol.
2002;
36
200-209
- 26
Karlmark K R, Weiskirchen R, Zimmermann H W. et al .
Hepatic recruitment of the inflammatory Gr1 + monocyte subset upon liver injury promotes
hepatic fibrosis.
Hepatology.
2009;
50
261-274
- 27
Karlmark K R, Wasmuth H E, Trautwein C. et al .
Chemokine-directed immune cell infiltration in acute and chronic liver disease.
Expert Rev Gastroenterol Hepatol.
2008;
2
233-242
- 28
Horuk R.
Chemokine receptors and HIV-1: the fusion of two major research fields.
Immunol Today.
1999;
20
89-94
- 29
Samson M, Libert F, Doranz B J. et al .
Resistance to HIV-1 infection in caucasian individuals bearing mutant alleles of the
CCR-5 chemokine receptor gene.
Nature.
1996;
382
722-725
- 30
Goulding C, McManus R, Murphy A. et al .
The CCR5-delta32 mutation: impact on disease outcome in individuals with hepatitis
C infection from a single source.
Gut.
2005;
54
1157-1161
- 31
Wasmuth H E, Werth A, Mueller T. et al .
CC chemokine receptor 5 delta32 polymorphism in two independent cohorts of hepatitis
C virus infected patients without hemophilia.
J Mol Med.
2004;
82
64-69
- 32
Hellier S, Frodsham A J, Hennig B J. et al .
Association of genetic variants of the chemokine receptor CCR5 and its ligands, RANTES
and MCP-2, with outcome of HCV infection.
Hepatology.
2003;
38
1468-1476
- 33
Woitas R P, Ahlenstiel G, Iwan A. et al .
Frequency of the HIV-protective CC chemokine receptor 5-Delta32 /Delta32 genotype
is increased in hepatitis C.
Gastroenterology.
2002;
122
1721-1728
- 34
Promrat K, McDermott D H, Gonzalez C M. et al .
Associations of chemokine system polymorphisms with clinical outcomes and treatment
responses of chronic hepatitis C.
Gastroenterology.
2003;
124
352-360
- 35
Wasmuth H E, Werth A, Mueller T. et al .
Haplotype-tagging RANTES gene variants influence response to antiviral therapy in
chronic hepatitis C.
Hepatology.
2004;
40
327-334
- 36
Schwabe R F, Bataller R, Brenner D A.
Human hepatic stellate cells express CCR5 and RANTES to induce proliferation and migration.
Am J Physiol Gastrointest Liver Physiol.
2003;
285
G949-G958
- 37
Holt A P, Haughton E L, Lalor P F. et al .
Liver myofibroblasts regulate infiltration and positioning of lymphocytes in human
liver.
Gastroenterology.
2009;
136
705-714
- 38
Holt A P, Salmon M, Buckley C D. et al .
Immune interactions in hepatic fibrosis.
Clin Liver Dis.
2008;
12
861-882, x
- 39
Bonacchi A, Petrai I, Defranco R M. et al .
The chemokine CCL21 modulates lymphocyte recruitment and fibrosis in chronic hepatitis
C.
Gastroenterology.
2003;
125
1060-1076
- 40
Muller G, Hopken U E, Lipp M.
The impact of CCR7 and CXCR5 on lymphoid organ development and systemic immunity.
Immunol Rev.
2003;
195
117-135
- 41
Winau F, Hegasy G, Weiskirchen R. et al .
Ito cells are liver-resident antigen-presenting cells for activating T cell responses.
Immunity.
2007;
26
117-129
- 42
Bernhagen J, Krohn R, Lue H. et al .
MIF is a noncognate ligand of CXC chemokine receptors in inflammatory and atherogenic
cell recruitment.
Nat Med.
2007;
13
587-596
- 43
Ryseck R P, MacDonald-Bravo H, Mattei M G. et al .
Cloning and sequence of a secretory protein induced by growth factors in mouse fibroblasts.
Exp Cell Res.
1989;
180
266-275
- 44
Stefanovic L, Brenner D A, Stefanovic B.
Direct hepatotoxic effect of KC chemokine in the liver without infiltration of neutrophils.
Exp Biol Med.
2005;
230
573-586
- 45
Lasagni L, Francalanci M, Annunziato F. et al .
An alternatively spliced variant of CXCR3 mediates the inhibition of endothelial cell
growth induced by IP-10, Mig, and I-TAC, and acts as functional receptor for platelet
factor 4.
J Exp Med.
2003;
197
1537-1549
- 46
Bonecchi R, Bianchi G, Bordignon P P. et al .
Differential expression of chemokine receptors and chemotactic responsiveness of type
1T helper cells (Th1 s) and Th2 s.
J Exp Med.
1998;
187
129-134
- 47
Xu L, Hui A Y, Albanis E. et al .
Human hepatic stellate cell lines, LX-1 and LX-2: new tools for analysis of hepatic
fibrosis.
Gut.
2005;
54
142-151
- 48
Bonacchi A, Romagnani P, Romanelli R G. et al .
Signal transduction by the chemokine receptor CXCR3: activation of Ras/ERK, Src, and
phosphatidylinositol 3-kinase/Akt controls cell migration and proliferation in human
vascular pericytes.
J Biol Chem.
2001;
276
9945-9954
- 49
Wasmuth H E, Lammert F, Zaldivar M M. et al .
Antifibrotic effects of CXCL9 and its receptor CXCR3 in livers of mice and humans.
Gastroenterology.
2009;
137
309-319, 319 e301 – 303
- 50
Wynn T A.
Fibrotic disease and the T(H)1 /T(H)2 paradigm.
Nat Rev Immunol.
2004;
4
583-594
- 51
Schrage A, Wechsung K, Neumann K. et al .
Enhanced T cell transmigration across the murine liver sinusoidal endothelium is mediated
by transcytosis and surface presentation of chemokines.
Hepatology.
2008;
48
1262-1272
- 52
Curbishley S M, Eksteen B, Gladue R P. et al .
CXCR 3 activation promotes lymphocyte transendothelial migration across human hepatic
endothelium under fluid flow.
Am J Pathol.
2005;
167
887-899
- 53
Colvin R A, Campanella G S, Sun J. et al .
Intracellular domains of CXCR3 that mediate CXCL9, CXCL10, and CXCL11 function.
J Biol Chem.
2004;
279
30 219-30 227
- 54
Hundelshausen von P, Koenen R R, Sack M. et al .
Heterophilic interactions of platelet factor 4 and RANTES promote monocyte arrest
on endothelium.
Blood.
2005;
105
924-930
- 55
Koenen R R, Hundelshausen von P, Nesmelova I V. et al .
Disrupting functional interactions between platelet chemokines inhibits atherosclerosis
in hyperlipidemic mice.
Nat Med.
2009;
15
97-103
- 56
Hong F, Tuyama A, Lee T F. et al .
Hepatic stellate cells express functional CXCR4: role in stromal cell-derived factor-1alpha-mediated
stellate cell activation.
Hepatology.
2009;
49
2055-2067
- 57
Wald O, Pappo O, Safadi R. et al .
Involvement of the CXCL12 /CXCR4 pathway in the advanced liver disease that is associated
with hepatitis C virus or hepatitis B virus.
Eur J Immunol.
2004;
34
1164-1174
- 58
Wang J, Shiozawa Y, Wang Y. et al .
The role of CXCR7 /RDC1 as a chemokine receptor for CXCL12 /SDF-1 in prostate cancer.
J Biol Chem.
2008;
283
4283-4294
- 59
Sierro F, Biben C, Martinez-Munoz L. et al .
Disrupted cardiac development but normal hematopoiesis in mice deficient in the second
CXCL12 /SDF-1 receptor, CXCR7.
Proc Natl Acad Sci U S A.
2007;
104
14 759-14 764
- 60
Graham G J.
D6 and the atypical chemokine receptor family: novel regulators of immune and inflammatory
processes.
Eur J Immunol.
2009;
39
342-351
- 61
Fraticelli P, Sironi M, Bianchi G. et al .
Fractalkine (CX3CL1) as an amplification circuit of polarized Th1 responses.
J Clin Invest.
2001;
107
1173-1181
- 62
Efsen E, Grappone C, DeFranco R M. et al .
Up-regulated expression of fractalkine and its receptor CX 3CR1 during liver injury
in humans.
J Hepatol.
2002;
37
39-47
- 63
Isse K, Harada K, Zen Y. et al .
Fractalkine and CX 3CR1 are involved in the recruitment of intraepithelial lymphocytes
of intrahepatic bile ducts.
Hepatology.
2005;
41
506-516
- 64
Wasmuth H E, Zaldivar M M, Berres M L. et al .
The fractalkine receptor CX 3CR1 is involved in liver fibrosis due to chronic hepatitis
C infection.
J Hepatol.
2008;
48
208-215
- 65
McDermott D H, Fong A M, Yang Q. et al .
Chemokine receptor mutant CX 3CR1-M280 has impaired adhesive function and correlates
with protection from cardiovascular disease in humans.
J Clin Invest.
2003;
111
1241-1250
- 66
Landsman L, Bar-On L, Zernecke A. et al .
CX3CR1 is required for monocyte homeostasis and atherogenesis by promoting cell survival.
Blood.
2009;
113
963-972
- 67
Bourd-Boittin K, Basset L, Bonnier D. et al .
Cx3 cl1 /Fractalkine Shedding by Human Hepatic Stellate Cells: Contribution to Chronic
Inflammation in the Liver.
J Cell Mol Med.
2009;
13
1526-1535
- 68
Pease J E, Horuk R.
Chemokine receptor antagonists: Part 1.
Expert Opin Ther Pat.
2009;
19
39-58
- 69
Pease J E, Horuk R.
Chemokine receptor antagonists: Part 2.
Expert Opin Ther Pat.
2009;
19
199-221
Prof. Dr. Hermann E. Wasmuth
Medizinische Klinik III, Universitätsklinikum Aachen, RWTH Aachen
Pauwelsstraße 30
52057 Aachen
Phone: ++ 49/2 41/8 08 08 61
Fax: ++ 49/2 41/8 08 24 55
Email: hwasmuth@ukaachen.de