Int J Sports Med 2009; 30(5): 320-324
DOI: 10.1055/s-0028-1111109
Physiology & Biochemistry

© Georg Thieme Verlag KG Stuttgart · New York

Muscle Strength and Pressor Response

J. U. Gonzales 1 , B. C. Thompson 2 , J. R. Thistlethwaite 2 , A. J. Harper 2 , B. W. Scheuermann 2
  • 1Department of Kinesiology, Pennsylvania State University, University Park, United States
  • 2Department of Kinesiology, The University of Toledo, Toledo, United States
Further Information

Publication History

accepted after revision October 6, 2008

Publication Date:
06 February 2009 (online)

Abstract

The purpose of this study was to determine if muscle strength influences the hyperemic response to dynamic exercise. Men with low (n=8) and high (n=9) maximal forearm strength performed dynamic handgrip exercise as the same absolute workload increased in a ramp function (0.5 kg·min−1). Forearm blood flow (FBF) was measured instantaneously by ultrasound Doppler and blood pressure was measured by auscultation. The pressor response to exercise was greater (P<0.05) for low strength men at workloads >1.5 kg allowing volumetric FBF (ml·min−1) and vascular conductance to increase in proportion to absolute workload similar to high strength men. When FBF was expressed relative to forearm volume (ml·min−1·100 ml−1) the hyperemic response to exercise (slope of relative FBF vs. workload) was greater in low strength men (3.2±1.5 vs. 1.7±0.4 ml·min−1·100 ml−1·kg−1, P<0.05) as was relative FBF at workloads >1.5 kg. However, when relative FBF was compared across relative work intensity, no difference was found between low and high strength groups. Together, these findings suggest men with low strength require a greater pressor response to match blood flow to exercise intensity as compared to high strength men.

References

  • 1 Adreani CM, Hill JM, Kaufman MP. Responses of group III and IV muscle afferents to dynamic exercise.  J Appl Physiol. 1997;  82 1811-1817
  • 2 Barnes WS. The relationship between maximum isometric strength and intramuscular circulatory occlusion.  Ergonomics. 1980;  23 351-357
  • 3 Belani KG, Buckley JJ, Poliac MO. Accuracy of radial artery blood pressure determination with the Vasotrac.  Can J Anesth. 1999;  46 488-496
  • 4 Gallagher KM, Fadel PJ, Smith SA, Norton KH, Querry RG, Olivencia-Yurvati A, Raven PB. Increases in intramuscular pressure raise arterial blood pressure during dynamic exercise.  J Appl Physiol. 2001;  91 2351-2358
  • 5 Gonzales JU, Thompson BC, Thistlethwaite JR, Harper AJ, Scheuermann BW. Forearm blood flow follows work rate during submaximal dynamic forearm exercise independent of sex.  J Appl Physiol. 2007;  103 1950-1957
  • 6 Greiwe JS, Hickner RC, Shah SD, Cryer PE, Holloszy JO. Norepinephrine response to exercise at the same relative intensity before and after endurance exercise training.  J Appl Physiol. 1999;  86 531-535
  • 7 Heyward V. Influence of static strength and intramuscular occlusion on submaximal static muscle endurance.  Res Quart. 1975;  46 393-402
  • 8 Hoelting BD, Scheuermann BW, Barstow TJ. The effect of contraction frequency on leg blood flow during knee extension exercise in humans.  J Appl Physiol. 2001;  91 671-679
  • 9 Hunter SK, Schletty JM, Schlachter KM, Griffith EE, Polichnowski AJ, Ng AV. Active hyperemia and vascular conductance differ between men and women for an isometric fatiguing contraction.  J Appl Physiol. 2006;  101 140-150
  • 10 Iwamoto GA, Botterman BR. Peripheral factors influencing expression of pressor reflex evoked by muscular contraction.  J Appl Physiol. 1985;  58 1676-1682
  • 11 Kagaya A, Ogita F. Blood flow during muscle contraction and relaxation in rhythmic exercise at different intensities.  Ann Physiol Anthrop. 1992;  11 251-256
  • 12 Lash JM. Regulation of skeletal muscle blood flow during contractions.  Proc Soc Exp Biol Med. 1996;  211 218-235
  • 13 Lewis SF, Snell PG, Taylor WF, Harma M, Graham RM, Pettinger WA, Blomqvist CG. Role of muscle mass and mode of contraction in circulatory responses to exercise.  J Appl Physiol. 1985;  58 146-151
  • 14 Middlekauff HR, Chiu J. Cyclooxygenase products sensitize muscle mechanoreceptors in healthy humans.  Am J Physiol. 2004;  287 H1944-H1949
  • 15 Pickering TG, Hall JE, Appel LJ, Falkner BE, Graves J, Hill MN, Jones DW, Kurtz T, Sheps SG, Roccella EJ. Recommendations for blood pressure measurement in humans and experimental animals: Part 1: Blood pressure measurement in humans: A statement for professionals from the subcommittee of Professional and Public Education of the American Heart Association Council.  Hypertension. 2005;  45 142-161
  • 16 Robergs RA, Icenogle MV, Hudson TL, Greene ER. Temporal inhomogeneity in brachial artery blood flow during forearm exercise.  Med Sci Sports Exerc. 1997;  29 1021-1027
  • 17 Sadamoto T, Bonde-Petersen F, Suzuki Y. Skeletal muscle tension, flow, pressure, and EMG during sustained isometric contractions in humans.  Eur J Appl Physiol. 1983;  51 395-408
  • 18 Stebbins CL, Walser B, Jafarzadeh M. Cardiovascular responses to static and dynamic contraction during comparable workloads in humans.  Am J Physiol Regul Integr Comp Physiol. 2002;  283 R568-R575
  • 19 Taylor JR. An introduction to error analysis. 2nd ed. Sausolito, California: University Science Books 1997
  • 20 Victor RG, Seals DR, Mark AL. Differential control of heart rate and sympathetic nerve activity during dynamic exercise: insight from intraneural recordings in humans.  J Clin Invest. 1987;  79 508-516
  • 21 Wigmore DM, Propert K, Kent-Braun JA. Blood flow does not limit skeletal muscle force production during incremental isometric contractions.  Eur J Appl Physiol. 2006;  96 370-378

Correspondence

Dr. J. U. GonzalesPhD 

Department of Kinesiology

Pennsylvania State University

226 Noll Laboratory

University Park

16802 United States

Phone: +814/865/12 35

Fax: +814/865/46 02

Email: jug18@psu.edu

    >