Int J Sports Med 2009; 30(6): 467-472
DOI: 10.1055/s-0028-1111110
Clinical Sciences

© Georg Thieme Verlag KG Stuttgart · New York

Physiological Predictors of Maximum Treadmill Walking Performance in Patients with Intermittent Claudication

G. A. Tew 1 , S. Nawaz 2 , M. Blagojevic 3 , I. Zwierska 3 , J. M. Saxton 1
  • 1Centre for Sport and Exercise Science, Sheffield Hallam University, Sheffield, United Kingdom
  • 2Northern General Hospital, Sheffield Vascular Institute, Sheffield, United Kingdom
  • 3Primary Care Sciences, Keele University, Keele, United Kingdom
Further Information

Publication History

accepted after revision November 11, 2008

Publication Date:
12 February 2009 (online)

Abstract

The purpose of this investigation was to identify physiological predictors of maximum treadmill walking performance (MWD) in patients with intermittent claudication. Forty-five claudicants performed a graded treadmill test to determine MWD, peak oxygen uptake, and gas exchange threshold. Calf muscle oxygenation (StO2) at 1 min and time to minimum StO2 were also measured using near-infrared spectroscopy. On other occasions, peak calf blood flow, resting ankle-brachial index, and pulmonary oxygen uptake kinetics during steady-state walking were assessed. A forward stepwise multiple regression analysis was performed to determine predictors of MWD. A regression model comprising time to minimum StO2, peak oxygen uptake, and StO2 at 1 min explained 64% of the variation in MWD. The results suggest that cardiopulmonary fitness and the ability to match oxygen delivery to metabolic demand are important determinants of walking performance in claudicants, and that certain near-infrared spectroscopy variables might be useful in studies that evaluate the mechanisms of clinical improvement with different treatment interventions.

References

  • 1 Afaq A, Montgomery PS, Scott KJ, Blevins SM, Whitsett TL, Gardner AW. The effect of current cigarette smoking on calf muscle hemoglobin oxygen saturation in patients with intermittent claudication.  Vasc Med. 2007;  12 167-173
  • 2 Askew CD, Green S, Walker PJ, Kerr GK, Green AA, Williams AD, Febbraio MA. Skeletal muscle phenotype is associated with exercise tolerance in patients with peripheral arterial disease.  J Vasc Surg. 2005;  41 802-807
  • 3 Bainton D, Sweetnam P, Baker I, Elwood P. Peripheral vascular disease: Consequence for survival and association with risk factors in the Speedwell prospective heart disease study.  Br Heart J. 1994;  72 128-132
  • 4 Baker JD, Dix DE. Variability of Doppler ankle pressures with arterial occlusive disease: An evaluation of ankle index and brachial-ankle pressure gradient.  Surgery. 1981;  89 134-137
  • 5 Barker GA, Green S, Green AA, Walkers PJ. Walking performance, oxygen uptake kinetics and resting muscle pyruvate dehydrogenase complex activity in peripheral arterial disease.  Clin Sci. 2004;  106 241-249
  • 6 Bauer TA, Regensteiner JG, Brass EP, Hiatt WR. Oxygen uptake kinetics during exercise are slowed in patients with peripheral arterial disease.  J Appl Physiol. 1999;  87 809-816
  • 7 Bauer TA, Brass EP, Hiatt WR. Impaired muscle oxygen use at onset of exercise in peripheral arterial disease.  J Vasc Surg. 2004;  40 488-493
  • 8 Bauer TA, Brass EP, Nehler M, Barstow TJ, Hiatt WR. Pulmonary VO2 dynamics during treadmill and arm exercise in peripheral arterial disease.  J Appl Physiol. 2004;  97 627-634
  • 9 Bauer TA, Brass EP, Barstow TJ, Hiatt WR. Skeletal muscle StO2 kinetics are slowed during low work rate calf exercise in peripheral arterial disease.  Eur J Appl Physiol. 2007;  100 143-151
  • 10 Beaver WL, Wasserman K, Whipp BJ. A new method for detecting anaerobic threshold by gas exchange.  J Appl Physiol. 1986;  60 2020-2027
  • 11 Brass EP, Hiatt WR. Acquired skeletal muscle metabolic myopathy in atherosclerotic peripheral arterial disease.  Vasc Med. 2000;  5 55-59
  • 12 Brass EP, Hiatt WR, Green S. Skeletal muscle metabolic changes in peripheral arterial disease contribute to exercise intolerance: A point-counterpoint discussion.  Vasc Med. 2004;  9 293-301
  • 13 Brevetti G, Silvestro A, Di Giacomo S, Bucur R, Di Donato A, Schiano V, Scopacasa F. Endothelial dysfunction in peripheral arterial disease is related to increase in plasma markers of inflammation and severity of peripheral circulatory impairment but not to classic risk factors and atherosclerotic burden.  J Vasc Surg. 2003;  38 374-379
  • 14 Cahalin LP, Mathier MA, Semigran MJ, Dec GW, DiSalvo TG. The six-minute walk test predicts peak oxygen uptake and survival in patients with advanced heart failure.  Chest. 1996;  110 325-332
  • 15 Comerota AJ, Throm RC, Kelly P, Jaff M. Tissue (muscle) oxygen saturation (StO2): A new measure of symptomatic lower-extremity arterial disease.  J Vasc Surg. 2003;  38 724-729
  • 16 DeLorey DS, Paterson DH, Kowalchuk JM. Effects of ageing on muscle O2 utilization and muscle oxygenation during the transition to moderate-intensity exercise.  Appl Physiol Nutr Metab. 2007;  32 1251-1262
  • 17 Drinkard B, MacDuffie J, McCann S, Uwaifo GI, Nicholson J, Yanovski JA. Relationships between walk/run performance and cardiorespira-tory fitness in adolescents who are overweight.  Phys Ther. 2001;  81 1889-1896
  • 18 Fowkes FG, Housley E, Cawood EH, Macintyre CC, Ruckley CV, Prescott RJ. Edinburgh Artery Study: Prevalence of asymptomatic and symptomatic peripheral arterial disease in the general population.  Int J Epidemiol. 1991;  20 384-392
  • 19 Gardner AW, Skinner JS, Cantwell BW, Smith LK. Prediction of claudication pain from clinical measurements obtained at rest.  Med Sci Sports Exerc. 1992;  24 163-170
  • 20 Gardner AW, Parker DE, Webb N, Montgomery PS, Scott KJ, Blevins SM. Calf muscle hemoglobin oxygen saturation characteristics and exercise performance in patients with intermittent claudication.  J Vasc Surg. 2008;  48 644-649
  • 21 Green S. Haemodynamic limitations and exercise performance in peripheral arterial disease.  Clin Physiol Funct Imaging. 2002;  22 81-91
  • 22 Hirsch AT, Haskal ZJ, Hertzer NR, Bakal CW, Creager MA, Halperin JL, Hiratzka LF, Murphy WR, Olin JW, Puschett JB, Rosenfield KA, Sacks D, Stanley JC, Taylor LM, White CJ, White J, White RA, Antman EM, Smith SC, Adams CD, Anderson JL, Faxon DP, Fuster V, Gibbons RJ, Hunt SA, Jacobs AK, Nishimura R, Ornato JP, Page RL, Riegel B. ACC/AHA 2005 Practice Guidelines for the management of patients with peripheral arterial disease (lower extremity, renal, mesenteric, and abdominal aortic).  Circulation. 2006;  113 e463-654
  • 23 Kilding AE, Winter EM, Fysh M. Moderate-domain pulmonary oxygen uptake kinetics and endurance running performance.  J Sports Sci. 2006;  24 1013-1022
  • 24 Mancini DM, Bolinger L, Li H, Kendrick K, Chance B, Wilson JR. Validation of near-infrared spectroscopy in humans.  J Appl Physiol. 1994;  77 2740-2747
  • 25 Rossi M, Carpi A. Skin microcirculation in peripheral arterial obliterative disease.  Biomed Pharmacother. 2004;  58 427-431
  • 26 Szuba A, Oka RK, Harada R, Cooke JP. Limb hemodynamics are not predictive of functional capacity in patients with PAD.  Vasc Med. 2006;  11 155-163
  • 27 Thijssen DH, Bleeker MW, Smits P, Hopman MT. Reproducibility of blood flow and post-occlusive reactive hyperaemia as measured by venous occlusion plethysmography.  Clin Sci. 2005;  108 151-157
  • 28 Yvonne-Tee GB, Rasool AHG, Halim AS, Rahman ARA. Noninvasive assessment of cutaneous vascular function in vivo using capillaroscopy, plethysmography and laser-Doppler instruments: Its strengths and weaknesses.  Clin Hemorheol Microcirc. 2006;  34 457-473

Correspondence

J. M. SaxtonPhD, BSc (Hons) 

Centre for Sport and Exercise Science

Sheffield Hallam University

A123 Collegiate Hall

Collegiate Crescent Campus

Sheffield Hallam University

Sheffield

United Kingdom

S10 2BP

Phone: +44/0114/225 23 58

Fax: +44/0114/225 43 41

Email: j.m.saxton@shu.ac.uk

    >