Horm Metab Res 2009; 41(2): 159-163
DOI: 10.1055/s-0028-1119408
Review

© Georg Thieme Verlag KG Stuttgart · New York

Wnt-signalling and the Metabolic Syndrome

S. Schinner 1
  • 1Department of Endocrinology, Diabetes and Rheumatology, University Hospital Düsseldorf, Düsseldorf, Germany
Weitere Informationen

Publikationsverlauf

received 24.09.2008

accepted 09.12.2008

Publikationsdatum:
12. Februar 2009 (online)

Abstract

The Wnt-signalling pathway plays a well-established role in embryogenesis and tumourigenesis. However, recent data puts Wnt-signalling in the context of metabolic disease. In vitro and in vivo data characterised the role of Wnt-signalling molecules in the regulation of adipocyte differentiation (adipogenesis). Furthermore, Wnts play a pivotal role in regulating pancreatic beta-cell function and mass. In addition, studies found polymorphisms within the gene encoding TCF7L2, a Wnt-regulated transcription factor, to contribute an increased risk to develop type 2 diabetes mellitus in humans. This review will summarise recent aspects of Wnt-signalling in these pathophysiologic events and discuss the contributions of dysregulation in Wnt-signalling to features of the metabolic syndrome.

References

  • 1 Logan CY, Nusse R. The Wnt signalling pathway in development and disease.  Annu Rev Cell Dev Biol. 2004;  20 781-810
  • 2 Rosen ED, Spiegelman BM. Molecular regulation of adipogenesis.  Annu Rev Cell Dev Biol. 2000;  16 145-171
  • 3 Ross SE, Hemati N, Longo KA, Bennett CN, Lucas PC, Erickson RL, MacDougald OA. Inhibition of adipogenesis by Wnt signalling.  Science. 2000;  289 950-953
  • 4 Longo KA, Wright WS, Kang S, Gerin I, Chiang SH, Lucas PC, Opp MR, MacDougald OA. Wnt10b inhibits development of white and brown adipose tissues.  J Biol Chem. 2004;  279 35503-35509
  • 5 Wright WS, Longo KA, Dolinsky VW, Gerin I, Kang S, Bennett CN, Chiang SH, Prestwich TC, Gress C, Burant CF, Susulic VS, MacDougald OA. Wnt10b inhibits obesity in ob/ob and agouti mice.  Diabetes. 2007;  56 295-303
  • 6 Christodoulides C, Laudes M, Cawthorn WP, Schinner S, Soos M, O’Rahilly S, Sethi JK, Vidal-Puig A. The Wnt antagonist Dickkopf-1 and its receptors are coordinately regulated during early human adipogenesis.  J Cell Sci. 2006;  119 2613-2620
  • 7 Christodoulides C, Scarda A, Granzotto M, Milan G, Dalla NE, Keogh J, De PG, Stirling H, Pannacciulli N, Sethi JK, Federspil G, Vidal-Puig A, Farooqi IS, O’Rahilly S, Vettor R. WNT10B mutations in human obesity.  Diabetologia. 2006;  49 678-684
  • 8 Guo J, Cooper LF. Influence of an LRP5 cytoplasmic SNP on Wnt signalling and osteoblastic differentiation.  Bone. 2007;  40 57-67
  • 9 Villena JA, Kim KH, Sul HS. Pref-1 and ADSF/resistin: two secreted factors inhibiting adipose tissue development.  Horm Metab Res. 2002;  34 664-670
  • 10 Fischer-Posovszky P, Wabitsch M, Hochberg Z. Endocrinology of adipose tissue – an update.  Horm Metab Res. 2007;  39 314-321
  • 11 Schinner S, Willenberg HS, Krause D, Schott M, Lamounier-Zepter V, Krug AW, Ehrhart-Bornstein M, Bornstein SR, Scherbaum WA. Adipocyte-derived products induce the transcription of the StAR promoter and stimulate aldosterone and cortisol secretion from adrenocortical cells through the Wnt-signalling pathway.  Int J Obes. 2007;  31 864-870
  • 12 Chen M, Hornsby PJ. Adenovirus-delivered DKK3/WNT4 and steroidogenesis in primary cultures of adrenocortical cells.  Horm Metab Res. 2006;  38 549-555
  • 13 Kuulasmaa T, Jaaskelainen J, Suppola S, Pietilainen T, Heikkila P, Aaltomaa S, Kosma VM, Voutilainen R. WNT-4 mRNA expression in human adrenocortical tumors and cultured adrenal cells.  Horm Metab Res. 2008;  40 668-673
  • 14 Yi F, Brubaker PL, Jin T. TCF-4 mediates cell type-specific regulation of proglucagon gene expression by beta-catenin and glycogen synthase kinase-3beta.  J Biol Chem. 2005;  280 1457-1464
  • 15 Schinner S, Ulgen F, Papewalis C, Schott M, Woelk A, Vidal-Puig A, Scherbaum WA. Regulation of insulin secretion, glucokinase gene transcription and beta cell proliferation by adipocyte-derived Wnt signalling molecules.  Diabetologia. 2008;  51 147-154
  • 16 Rulifson IC, Karnik SK, Heiser PW, ten Berge D, Chen H, Gu X, Taketo MM, Nusse R, Hebrok M, Kim SK. Wnt signalling regulates pancreatic beta cell proliferation.  Proc Natl Acad Sci USA. 2007;  104 6247-6252
  • 17 Shu L, Sauter NS, Schulthess FT, Matveyenko AV, Oberholzer J, Maedler K. Transcription factor 7-like 2 regulates beta-cell survival and function in human pancreatic islets.  Diabetes. 2008;  57 645-653
  • 18 Fujino T, Asaba H, Kang MJ, Ikeda Y, Sone H, Takada S, Kim DH, Ioka RX, Ono M, Tomoyori H, Okubo M, Murase T, Kamataki A, Yamamoto J, Magoori K, Takahashi S, Miyamoto Y, Oishi H, Nose M, Okazaki M, Usui S, Imaizumi K, Yanagisawa M, Sakai J, Yamamoto TT. Low-density lipoprotein receptor-related protein 5 (LRP5) is essential for normal cholesterol metabolism and glucose-induced insulin secretion.  Proc Natl Acad Sci USA. 2003;  100 229-234
  • 19 Liu Z, Habener JF. Glucagon-like peptide-1 activation of TCF7L2-dependent Wnt signalling enhances pancreatic beta cell proliferation.  J Biol Chem. 2008;  283 8723-8735
  • 20 Yi F, Sun J, Lim GE, Fantus IG, Brubaker PL, Jin T. Cross talk between the insulin and Wnt signalling pathways: evidence from intestinal endocrine L cells.  Endocrinology. 2008;  149 2341-2351
  • 21 Grant SF, Thorleifsson G, Reynisdottir I, Benediktsson R, Manolescu A, Sainz J, Helgason A, Stefansson H, Emilsson V, Helgadottir A, Styrkarsdottir U, Magnusson KP, Walters GB, Palsdottir E, Jonsdottir T, Gudmundsdottir T, Gylfason A, Saemundsdottir J, Wilensky RL, Reilly MP, Rader DJ, Bagger Y, Christiansen C, Gudnason V, Sigurdsson G, Thorsteinsdottir U, Gulcher JR, Kong A, Stefansson K. Variant of transcription factor 7-like 2 (TCF7L2) gene confers risk of type 2 diabetes.  Nat Genet. 2006;  38 320-323
  • 22 Florez JC, Jablonski KA, Bayley N, Pollin TI, Bakker PI de, Shuldiner AR, Knowler WC, Nathan DM, Altshuler D. TCF7L2 polymorphisms and progression to diabetes in the Diabetes Prevention Program.  N Engl J Med. 2006;  355 241-250
  • 23 Kiessling A, Ehrhart-Bornstein M. Transcription factor 7-like 2 (TCFL2) – a novel factor involved in pathogenesis of type 2 diabetes. (Comment on [21]: Grant et al. Nat Genet 2006; 38: 320–323).  Horm Metab Res. 2006;  38 137-138
  • 24 Cauchi S, Meyre D, Dina C, Choquet H, Samson C, Gallina S, Balkau B, Charpentier G, Pattou F, Stetsyuk V, Scharfmann R, Staels B, Fruhbeck G, Froguel P. Transcription factor TCF7L2 genetic study in the French population: expression in human beta-cells and adipose tissue and strong association with type 2 diabetes.  Diabetes. 2006;  55 2903-2908
  • 25 Cauchi S, El AY, Choquet H, Dina C, Krempler F, Weitgasser R, Nejjari C, Patsch W, Chikri M, Meyre D, Froguel P. TCF7L2 is reproducibly associated with type 2 diabetes in various ethnic groups: a global meta-analysis.  J Mol Med. 2007;  85 777-782
  • 26 Hayashi T, Iwamoto Y, Kaku K, Hirose H, Maeda S. Replication study for the association of TCF7L2 with susceptibility to type 2 diabetes in a Japanese population.  Diabetologia. 2007;  50 980-984
  • 27 Helgason A, Palsson S, Thorleifsson G, Grant SF, Emilsson V, Gunnarsdottir S, Adeyemo A, Chen Y, Chen G, Reynisdottir I, Benediktsson R, Hinney A, Hansen T, Andersen G, Borch-Johnsen K, Jorgensen T, Schafer H, Faruque M, Doumatey A, Zhou J, Wilensky RL, Reilly MP, Rader DJ, Bagger Y, Christiansen C, Sigurdsson G, Hebebrand J, Pedersen O, Thorsteinsdottir U, Gulcher JR, Kong A, Rotimi C, Stefansson K. Refining the impact of TCF7L2 gene variants on type 2 diabetes and adaptive evolution.  Nat Genet. 2007;  39 218-225
  • 28 Steinthorsdottir V, Thorleifsson G, Reynisdottir I, Benediktsson R, Jonsdottir T, Walters GB, Styrkarsdottir U, Gretarsdottir S, Emilsson V, Ghosh S, Baker A, Snorradottir S, Bjarnason H, Ng MC, Hansen T, Bagger Y, Wilensky RL, Reilly MP, Adeyemo A, Chen Y, Zhou J, Gudnason V, Chen G, Huang H, Lashley K, Doumatey A, So WY, Ma RC, Andersen G, Borch-Johnsen K, Jorgensen T, Vliet-Ostaptchouk JV van, Hofker MH, Wijmenga C, Christiansen C, Rader DJ, Rotimi C, Gurney M, Chan JC, Pedersen O, Sigurdsson G, Gulcher JR, Thorsteinsdottir U, Kong A, Stefansson K. A variant in CDKAL1 influences insulin response and risk of type 2 diabetes.  Nat Genet. 2007;  39 770-775
  • 29 Chang YC, Chang TJ, Jiang YD, Kuo SS, Lee KC, Chiu KC, Chuang LM. Association study of the genetic polymorphisms of the transcription factor 7-like 2 (TCF7L2) gene and type 2 diabetes in the Chinese population.  Diabetes. 2007;  56 2631-2637
  • 30 Lyssenko V, Lupi R, Marchetti P, Del GS, Orho-Melander M, Almgren P, Sjogren M, Ling C, Eriksson KF, Lethagen AL, Mancarella R, Berglund G, Tuomi T, Nilsson P, Del PS, Groop L. Mechanisms by which common variants in the TCF7L2 gene increase risk of type 2 diabetes.  J Clin Invest. 2007;  117 2155-2163
  • 31 Schafer SA, Tschritter O, Machicao F, Thamer C, Stefan N, Gallwitz B, Holst JJ, Dekker JM, ’t Hart LM, Nijpels G, Haeften TW van, Haring HU, Fritsche A. Impaired glucagon-like peptide-1-induced insulin secretion in carriers of transcription factor 7-like 2 (TCF7L2) gene polymorphisms.  Diabetologia. 2007;  50 2443-2450

Correspondence

S. SchinnerMD 

Department of Endocrinology, Diabetes and Rheumatology

University Hospital Düsseldorf

Moorenstr. 5

40225 Düsseldorf

Telefon: +49/211/811 78 10

Fax: +49/211/811 78 60

eMail: sven.schinner@uni-duesseldorf.de

    >