Zusammenfassung
Es werden therapeutische Ansätze zur Rekonstruktion von Trachea
und Pharynx mit Implantatmaterialien beschrieben. Trotz vielfältiger
methodischer Ansätze mit unterschiedlichsten Materialien zur
Trachealrekonstruktion hat es bisher keine Methode zur erfolgreichen klinischen
Anwendung gebracht. Zu den wesentlichen Problemen gehörten u. a.
Nahtinsuffizienzen, Stenosen, fehlende mukoziliäre Clearance und
Vaskularisation. Erst die Entwicklung des Tissue Engineerings führte zu
neuen Impulsen und neuartigen therapeutischen Optionen auch in der
rekonstruktiven Trachealchirurgie. In der Pharynxrekonstruktion sind derzeit
noch keine weiterreichenden Ansätze erkennbar, aus denen klinische
Anwendung und Erfolg abschätzbar wären. In eigenen Arbeiten wurde ein
neues polymeres Implantatmaterial bestehend aus Multiblock-Copolymeren
verwendet, das aufgrund seiner physikochemischen Eigenschaften zur
Rekonstruktion des oberen Aerodigestivtraktes (ADT) erfolgreich erschien. Um
das Material für den Einsatz im ADT unter extremen chemischen,
enzymatischen, bakteriellen und mechanischen Bedingungen zu testen, wurde es
zur Rekonstruktion eines durchgreifenden Magenwanddefektes im Tiermodell
(n = 42) eingesetzt. Gastrointestinale Komplikationen
sowie negative systemische Auswirkungen traten bei keinem Versuchstier auf, und
es kam zur mehrschichtigen Regeneration der Magenwand u. a. mit Aufbau
einer regelrechten Mukosa. Durch die Stammzelltechnologie werden in Zukunft
weitere Fortschritte in der Rekonstruktion von Geweben nach Prinzipien des
Tissue Engineerings auch in der Kopf-Hals-Chirurgie erwartet.
Abstract
The existing therapeutical options for the tracheal and pharyngeal
reconstruction by use of implant materials are described. Inspite of a
multitude of options and the availability of very different materials none of
these methods applied for tracheal reconstruction were successfully introduced
into the clinical routine. Essential problems are insufficiencies of
anastomoses, stenoses, lack of mucociliary clearance and vascularisation. The
advances in Tissue Engineering (TE) offer new therapeutical options also in the
field of the reconstructive surgery of the trachea. In pharyngeal
reconstruction far reaching developments cannot be recognized at the moment
which would allow to give a prognosis of their success in clinical application.
A new polymeric implant material consisting of multiblock copolymers was
applied in our own work which was regarded as a promising material for the
reconstruction of the upper aerodigestive tract (ADT) due to its
physicochemical characteristics. In order to test this material for
applications in the ADT under extreme chemical, enzymatical, bacterial and
mechanical conditions we applied it for the reconstruction of a complete defect
of the gastric wall in an animal model. In none of the animals tested either
gastrointestinal complications or negative systemic events occurred, however,
there was a multilayered regeneration of the gastric wall implying a regular
structured mucosa.
In future the advanced stem cell technology will allow further
progress in the reconstruction of different kind of tissues also in the field
of head and neck surgery following the principles of Tissue Engineering.
Schlüsselwörter
oberer Aerodigestivtrakt - multifunktionale, polymere Implantatmaterialien - Pharynxrekonstruktion
- Trachearekonstruktion - Tissue Engineering - Magenwandregeneration
Key words
upper aerodigestive tract - multifunctional polymer implant materials - pharynx reconstruction
- tracheal reconstruction - tissue engineering - gastric wall regeneration
Literatur
1
Szilagyi D E, France L C, Smith R F, Whitcomb J G.
The clinical use of an elastic dacron prosthesis.
AMA Arch Surg.
1958;
77
538-551
2
Kohane D S, Langer R.
Polymeric biomaterials in tissue engineering.
Pediatr Res.
2008;
63
487-491
3
Mason C, Dunnill P.
Lessons for the nascent regenerative medicine industry from
the biotech sector.
Regen Med.
2007;
2
753-756
4
Mason C, Dunnill P.
A brief definition of regenerative medicine.
Regen Med.
2008;
3
1-5
5 Emmrich F, Lendlein A.
Perspektiven für die Regenerative Medizin in
Deutschland, Langfassung. In: Emmrich F, Lendlein A (eds) Arbeitskreis Regenerative Medizin. 2004: 1-82
6
Breymann C, Schmidt D, Hoerstrup S P.
Umbilical cord cells as a source of cardiovascular tissue
engineering.
Stem Cell Rev.
2006;
2
87-92
7
Reed J A, Patarca R.
Regenerative dental medicine: stem cells and tissue
engineering in dentistry.
J Environ Pathol Toxicol Oncol.
2006;
25
537-569
8
Ioannidou E.
Therapeutic modulation of growth factors and cytokines in
regenerative medicine.
Curr Pharm Des.
2006;
12
2397-2408
9
Fine G C, Liao R, Sohn R L.
Cell therapy for cardiac repair.
Panminverva Med.
2008;
50
129-137
10
Kume S.
Stem-cell-based approaches for regenerative medicine.
Dev Growth Differ.
2005;
47
393-402
11
Spector M.
Biomaterials-based tissue engineering and regenerative
medicine solutions to musculoskeletal problems.
Swiss Med Wkly.
2006;
136
293-301
12
Bajada S, Mazakova I, Richardson J B, Ashammakhi N.
Updates on stem cells and their applications in regenerative
medicine.
J Tissue Eng Regen Med.
2008;
2
169-183
13
Slater B J, Kwan M D, Gupta D M, Panetta N J, Longaker M T.
Mesenchymal cells for skeletal tissue engineering.
Expert Opin Biol Ther.
2008;
8
885-893
14
Schulz R M, Bader A.
Cartilage tissue engineering and bioreactor systems for the
cultivation and stimulation of chondrocytes.
Eur Biophys J.
2007;
36
539-568
15
Breymann C, Schmidt D, Hoerstrup S P.
Umbilical cord cells as a source of cardiovascular tissue
engineering.
Stem Cell Rev.
2006;
2
87-92
16
Feki A, Faltin D L, Lei T, Dubuisson J B, Jacob S, Irion O.
Sphincter incontinence: Is regenerative medicine the best
alternative to restore urinary or anal sphincter function?.
Int J Biochem Cell Biol.
2007;
39
678-684
17
Reed J A, Patarca R.
Regenerative dental medicine: stem cells and tissue
engineering in dentistry.
J Environ Pathol Toxicol Oncol.
2006;
25
537-569
18
Ott H C, Taylor D A.
From cardiac repair to cardiac regeneration – ready to
translate?.
Expert Opin Biol Ther.
2006;
6
867-878
19
Richter-Kuhlmann E.
Regenerative Medizin.
Deutsches Ärzteblatt.
2007;
46
3154-3156
20
Mason C.
Regenerative medicine. The industry comes of age.
Med Device Technol.
2007;
18
25-30
21
Mason C, Dunnill P.
The strong financial case for regenerative medicine and the
regen industry.
Regen Med.
2008;
3
351-363
22
Schuh J C.
Medical device regulations and testing for toxicologic
pathologists.
Toxicol Pathol.
2008;
36
63-69
23
Jayo M J, Watson D D, Wagner B J, Bertram T A.
Tissue engineering and regenerative medicine: role of
toxicologic pathologists for an emerging medical technology.
Toxicol Pathol.
2008;
36
92-96
24
Pfühler W, Middel C D, Hübner M.
Stoffrecht.
.
2008;
1
12-18
25
Siegmund-Schultze N.
Gewebegesetz. Mehr Bürokratie und zu wenig
Information.
Deutsches Ärzteblatt.
2008;
105
828-830
26
Gall K, Yakacki C M, Liu Y, Shandas R, Willett N, Anseth K S.
Thermomechanics of the shape memory effect in polymers for
biomedical applications.
J Biomed Mater Res A.
2005;
73
339-348
27
Langer R, Tirrell D A.
Designing materials for biology and medicine.
Nature.
2004;
428
487-492
28
Lendlein A, Kelch S.
Degradable, Multifunctional Biomaterials with
Shape-memory.
Materials Science Forum.
2005;
492
219-223
29
Lendlein A, Kratz K, Kelch S.
Smart implant materials.
Med Device Technol.
2005;
16
12-14
30
Lendlein A, Schmidt A M, Langer R.
AB-polymer networks based on oligo(epsilon-caprolactone)
segments showing shape-memory properties.
Proc Natl Acad Sci.
2001;
18
842-847
31
Sawney A S, Pathak C P, Hubbell J A.
Bioerodible Hydrogels Based on Photopolymerized Poly(ethylene
glycol)-co-poly(alpha-hydroxy acid) Diacrylate Macromers.
Macromolecules.
1993;
26
581-587
32
Burkoth A K, Anseth K S.
MALDI-TOF Characterization of Highly Cross-Linked, Degradable
Polymer Networks.
Macromolecules.
1999;
32
1438-1444
33
Thevenot P, Hu W, Tang L.
Surface chemistry influences implant biocompatibility.
Curr Top Med Chem.
2008;
8
270-280
34
Rickert D, Lendlein A, Schmidt A M, Kelch S, Roehlke W, Fuhrman R, Franke R P.
In vitro cytotoxicity testing of AB-polymer networks based on
oligo(epsilon-caprolactone) segments after different sterilization
techniques.
J Biomed Mater Res B.
2003;
67
722-731
35
Barron D, Collins M N, Flannery M J, Leahy J J, Birkinshaw C.
Crystal ageing in irradiated ultra high molecular weight
polyethylene.
J Mater Sci Mater Med.
2008;
19
2293-2299
36
Yakacki C M, Lyons M B, Rech B, Gall K, Shandas R.
Cytotoxicity and thermomechanical behavior of biomedical
shape-memory polymer networks post-sterilization.
Biomed Mater.
2008;
3
15 010. Epub ahead of print
37
An Y H, Alvi F I, Kang Q, Laberge M, Drews M J, Zhang J, Matthews M A, Arciola C R.
Effects of sterilization on implant mechanical property and
biocompatibility.
Int J Artif Organs.
2005;
28
1126-1137
38
Cavalot A L, Gervasio C F, Nazionale G, Albera R, Bussi M, Staffieri A, Ferrero V,
Cortesina G.
Pharyngocutaneous fistula as a complication of total
laryngectomy: review of the literature and analysis of case records.
Otolaryngol Head Neck Surg.
2000;
123
587-592
39
Makitie A A, Irish J, Gullane P J.
Pharyngocutaneous fistula.
Curr Opin Otolaryngol Head Neck Surg.
2003;
11
78-84
40
Fung K, Teknos T N, Vandenberg C D, Lyden T H, Bradford C R, Hogikyan N D, Kim J,
Prince M E, Wolf G T, Chepeha D B.
Prevention of wound complications following salvage
laryngectomy using free vascularized tissue.
Head Neck.
2007;
29
425-430
41
Richter G T, Ryckman F, Brown R L, Rutter M J.
Endoscopic management of recurrent tracheoesophageal
fistula.
J Pediatr Surg.
2008;
43
238-245
42
Bachor E, Neun O, Bogeschdorfer F, Gruen P M.
Reimbursement of patients with high costs in a department of
otorhinolaryngology of maximum care and refinancing by the German DRG
system.
Laryngo-Rhino-Otologie.
2005;
84
594-601
43
Franz D, Franz K, Roeder N, Hörmann K, Fischer R J, Alberty J.
Case allocation of extensive operations on head and neck
within the German DRG system 2004 – 2007: what is the net
result of the continued developments in case allocation?.
HNO.
2007;
55
538-545
44
Daniel R A.
The regeneration of defects of the trachea and bronchi: an
experimental study.
J Thorac Surg.
1948;
17
335-349
45
Daniel R A, Taliaferro R M, Schaffarzick W R.
Experimental Studies on the Repair of Wounds and Defects of
the Trachea and Bronchi.
Chest.
1950;
17
426-441
46
Longmire W P.
Tracheal wounds and injuries, repair of large defects.
Ann Otol Rhinol Laryngol.
1948;
57
875-883
47
Ferguson D J, Wild J J, Wangensteen O H.
Experimental resection of the trachea.
Surgery.
1950;
28
597-619
48
Bucher R M, Burnett E, Rosenmond G P.
Experimental reconstruction of the trachea and bronchial
defects with stainless steel wire mesh.
J Thorac Surg.
1951;
21
572-583
49
Craig R L, Holmes G W, Shabart E J.
Resection and replacement with prothesis.
J Thorac Surg.
1953;
25
384-396
50
Holle F.
Healing conditions of tracheobronchial tree and its plastic
reconstruction. Experimental study.
Arch Klin Chir.
1953;
277
1-35
51
Ekestrom S.
Experimental reconstruction of intrathoracic trachea.
Acta Chir Scand.
1956;
110
367-372
52
Rush B, Cliffton E.
Experimental reconstruction of the trachea with bladder
mucosa.
Surgery.
1956;
40
1105-1110
53
Bell J W.
Experimental repair of tracheal defects with gallbladder
mucosa.
Chest.
1960;
38
140-147
54
Beal A C, Harrington O B, Greenberg S D, Morris G C, Usher F C.
Tracheal replacement with heavy Marlex mesh.
Arch Surg.
1962;
87
390-396
55
Graziano J L, Spinazzola A, Neville W E.
Prosthetic replacement of the tracheal carina.
Ann Thorac Surg.
1967;
4
1-11
56
Greenberg S d, Wilms R K.
Tracheal prostheses: An experimental study in dogs.
Arch Otolaryngol.
1962;
75
335-341
57
Poticha S M, Lewis F J.
Experimental replacment of the trachea.
J Thorac Cardiovasc Surg.
1966;
52
61-67
58
Wenig B L, Reuter V C, Steinberg B M, Strong E W.
Tracheal reconstruction: in vitro und in vivo animal pilot
study.
Laryngoscope.
1987;
97
959-965
59
Schauwecker H H, Gerlach H, Planck H, Bücherl E S.
Isoelastic polyurethane prothesis for segmental trachea
replacement in beagle dogs.
Artif Organs.
1989;
13
216-218
60
Langer R, Vacanti J P.
Tissue engineering.
Science.
1993;
260
920-926
61
Grillo H C.
Tracheal replacement: a critical review.
Ann Thorac Surg.
2002;
73
1995-2004
62
Vacanti C A, Paige K T, Kim W S, Sakata J, Upton J, Vacanti J P.
Experimental tracheal replacement using tissue engineered
cartilage.
J Pediatr Surg.
1994;
29
201-205
63
Sakata J, Vacanti C A, Schloo B, Healy G B, Langer R, Vacanti J P.
Tracheal composites tissue engineered from chondrocytes,
tracheal epithelial cells and synthetic degradable scaffolding.
Transplant Proc.
1994;
26
3309-3310
64
Kojima K, Bonassar L J, Roy A K, Vacanti C A, Cortiella J.
Autologous tissue-engineered trachea with sheep nasal
chondrozytes.
J Thorac Cardiovasc Surg.
2002;
123
1177-1184
65
Fonkalsrud E W, Sumida S.
Tracheal replacement with autologous esophagus for tracheal
stricture.
Arch Surg.
1971;
102
139-142
66
Sabas A A, Uez J B, Rojas O, Inones A, Aranguren J A.
Replacement of the trachea with dura mater. Experimental
work.
J Thorac Cardiovasc Surg.
1977;
74
761-765
67
Kon M, van den Hooff A.
Cartilage tube formation by perichondrium: a new concept for
tracheal reconstruction.
Plast Reconstr Surg.
1983;
72
791-797
68
Cohen R C, Filler R M, Konuma K, Bahoric A, Kent G, Smith C.
The successful reconstruction of thoracic tracheal defects
with free periostal grafts.
J Pediatr Surg.
1985;
20
852-858
69
Har-El G, Krespi Y P, Goldsher M.
The combined use of muscle flaps and alloplasts for tracheal
reconstruction.
Arch Otolaryngol Head Neck Surg.
1989;
115
1310-1313
70
Lochbihler H, Hoelzl J, Dietz H G.
Tissue compatibility and biodegradation of new absorbable
stents for tracheal stabilization: an experimental study.
J Pediatr Surg.
1997;
32
717-720
71
Korpela A, Aarnio P, Sariola H, Törmälä P, Harjula A.
Comparision of tissue reactions in the tracheal mucosa
surrounding a bioabsorbable and silicone airway stents.
Ann Thorac Surg.
1998;
66
1772-1776
72
Korpela A, Aarnio P, Sariola H, Törmälä P, Harjula A.
Bioabsorbable self-inforced poly-L-lactide, metallic and
silicone stents in the management of experimental tracheal stenosis.
Chest.
1999;
115
490-495
73
Robey T C, Välimaa M S, Murphy H S, Törmälä P, Mooney D J, Weatherly R A.
Use of internal bioabsorbable PLGA “finge-type”
stents in a rabbit tracheal reconstruction model.
Arch Otolaryngol Head Neck Surg.
2000;
126
985-991
74
Cotton R T, Seid A B.
Management of the extubation problem in the premature child:
anterior cricoid split as an alternative to tracheotomy.
Ann Otol Rhinol Laryngol.
1980;
89
508-511
75
Zalzal G H, Deutch E.
External fixation using microplates after laryngotracheal
expansion surgery.
Arch Otolarygnol Head Neck Surg.
1991;
117
155-159
76
Weisberger E C, Nguyen C T.
Laryngotracheal reconstruction using a Vitallium alloy
miniplate.
Ann Otol Rhinol Laryngol.
1996;
105
363-366
77
Willner A, Modlin S.
Extraluminal laryngotracheal fixation with absorbable
miniplates.
Arch Otolaryngol Head Neck Surg.
1995;
121
1356-1360
78
Pietrzak W S, Sarver D R, Verstynen B S.
Bioabsorbable polymer science for the practicing
surgeon.
J Craniofac Surg.
1997;
107
87-91
79
Eppley B L, Reilly M.
Degradation characteristics of PLLA-PGA bone fixation
devices.
J Craniofac surg.
1997;
8
116-120
80
Long C M, Conlex S F, Kajdacsy-Balla A, Kerschner J E.
Laryngotracheal reconstruction in canines. Fixation of
autologous costochondral grafts using polylactic and polyglycolic acid
miniplates.
Arch Otolaryngol Head Neck Surg.
2001;
127
570-575
81
Kojima K, Bonassar L J, Roy A K, Mizuno H, Cortiella J, Vacanti C A.
A composite tissue-engineered trachea using sheep nasal
chondrocyte and epithel cells.
FASEB J.
2003;
17
823-828
82
Kamil S H, Eavey R D, Vacanti M P, Vacanti C A, Hartnick C J.
Tissue-engineered cartilage as af graft source for
laryngotracheal reconstruction.
Arch Otolaryngol Head Neck Surg.
2004;
130
1048-1051
83
George M, Lang F, Pasche P, Monnier P.
Surgical management of laryngotracheal stenosis in
adults.
Eur Arch Otorhinolaryngol.
2005;
262
609-615
84
Herrington H C, Weber S M, Andersen P E.
Modern management of laryngotracheal stenosis.
Laryngoscope.
2006;
116
1553-1557
85
Jaqueet Y, Pilloud R, Lang F JW, Monnier P.
Prefabrication of composite grafts for long-segment tracheal
reconstruction.
Arch Otolaryngol Head Neck Surg.
2004;
130
1185-1190
86
Jaillard S, Holder-Espinasse M, Hubert T, Copin M C, Duterque-Coquillaud M, Wurtz A,
Marquette C H.
Tracheal replacement by allogenic aorta in the pig.
Chest.
2006;
130
1397-1404
87
Martinod E, Seguin A, Holder-Espinasse M.
Tracheal regeneration following tracheal replacement with an
allogenic aorta.
Ann Thorac Surg.
2005;
79
942-949
88
Martinod E, Seguin A, Pfeuty K, Fornes P, Kambouchner M, Azorin J F, Carpentier A F.
Long-term evaluation of the replacement of the trachea with
an autologous aortic graft.
Ann Thorac Surg.
2003;
75
1572-1578
89
Azorin J G, Bertin F, Martinod E.
Tracheal replacement with an aortic autograft.
Eur J Card Thorac Surg.
2006;
29
261-263
90
Macchiarini P, Jungebluth P, Go T, Asnaghi M A, Rees L E, Cogan T A, Dodson A, Martorell J,
Bellini S, Parnigotto P P, Dickinson S C, Hollander A P, Mantero S, Conconi M T, Birchall M A.
Clinical transplantation of a tissue-engineered airway.
Lancet.
2008;
372
2023-2030
91
Ernst A, Ashiku S.
Tracheal transplantation: are we any closer to the holy grail
of airway management?.
Chest.
2006;
130
1299-1300
92
Omori K, Nakamura T, Kanemaru S, Asato R, Yamashita M, Tanaka S, Magrufov A, Ito J,
Shimizu Y.
Regenerative medicine of the trachea: the first human
case.
Ann Otol Rhinol Laryngol.
2005;
114
429-433
93
Yamashita M, Kanemaru S I, Hirano S, Magrufov A, Tamaki H, Tamura Y, Kishimoto M,
Omori K, Nakamura T, Ito J.
Tracheal regeneration after partial resection: a tissue
engineering approach.
Laryngoscope.
2007;
117
497-502
94
Mall M A.
Role of cilia, mucus, and airway surface liquid in
mucociliary dysfunction: lessons from mouse models.
J Aerosol Med Pulm Drug Deliv.
2008;
21
13-24
95
Biesalski H K, Nohr D.
Importance of vitamin-A for lung function and
development.
Mol Aspects Med.
2003;
24
431-440
96
Evans M J, van Winkle L S, Fanucchi M V, Plopper C G.
Cellular and molecular characteristics of basal cells in
airway epithelium.
Exp Lung Res.
2001;
27
401-415
97
Hajj R, Baranek T, Le Naour R, Lesimple P, Puchelle E, Coraux C.
Basal cells of the human adult airway surface epithelium
retain transit-amplifying cell properties.
Stem Cells.
2007;
25
139-148
98
Ziegelaar B W, Aigner J, Staudenmaier R, Lempart K, Mack B, Happ T, Sittinger M, Endres M,
Naumann A, Kastenbauer E, Rotter N.
The characterisation of human respiratory epithelial cells
cultured on resorbable scaffolds: first steps towards a tissue engineered
tracheal replacement.
Biomaterials.
2002;
23
1425-1438
99
Hicks jr W, Hall 3rd L, Sigurdson L, Stewart C, Hard R, Winston J, Lwebuga-Mukasa J.
Isolation and characterization of basal cells from human
upper respiratory epithelium.
Exp Cell Res.
1997;
237
357-363
100
Mercer R R, Russell M L, Roggli V L, Crapo J D.
Cell number and distribution in human and rat airways.
Am J Respir Cell Mol Biol.
1994;
10
613-624
101
Yokoyama T.
Motor or sensor: a new aspect of primary cilia function.
Anat Sci Int.
2004;
79
47-54
102
Davis C W, Dickey B F.
Regulated airway goblet cell mucin secretion.
Annu Rev Physiol.
2008;
70
487-512
103
Hong K U, Reynolds S D, Watkins S, Fuchs E, Stripp B R.
In vivo differentiation potential of tracheal basal cells:
evidence for multipotent and unipotent subpopulations.
Am J Physiol Lung Cell Mol Physiol.
2004;
286
643-649
104
Nomoto Y, Suzuki T, Yasuhiro T, Kobayashi K, Miyake M, Hazama A, Wada I, Kanemaru S,
Nakamura T, Omori K.
Tissue engineering for regeneration of the tracheal
epithelium.
Ann Otol Rhinol Laryngol.
2006;
115
501-506
105
Tada Y, Suzuki T, Takezawa T, Nomoto Y, Kobayashi K, Nakamura T, Omori K.
Regeneration of tracheal epithelium utilizing a novel
bipotential collagen scaffold.
Ann Otol Rhinol Laryngol.
2008;
117
359-365
106
Araki M, Takano T, Uemonsa T, Nakane Y, Tsudzuki M, Kaneko T.
Epithelia-mesenchyme interaction plays an essential role in
transdifferentiation of retinal pigment epithelium of silver mutant quail:
localization of FGF and related molecules and aberrant migration pattern of
neural crest cells during eye rudiment formation.
Dev Biol.
2002;
244
358-371
107
El Ghalbzouri A, Ponec M.
Diffusible factors released by fibroblasts support epidermal
morphogenesis and deposition of basement membrane components.
Wound Repair Regen.
2004;
12
359-367
108
Xia W, Phan T T, Lim I J, Longaker M T, Yang G P.
Complex epithelial-mesenchymal interactions modulate
transforming growth factor-beta expression in keloid-derived cells.
Wound Repair Regen.
2004;
12
546-556
109
Harrison C A, Dalley A J, Mac Neil S.
A simple in vitro model for investigating
epithelial/mesenchymal interactions: keratinocyte inhibition of fibroblast
proliferation and fibronectin synthesis.
Wound Repair Regen.
2005;
13
543-550
110
Imaizumi F, Asahina I, Moriyama T, Ishii M, Omura K.
Cultured mucosal cell sheet with a double layer of
keratinocytes and fibroblasts on a collagen membrane.
Tissue Eng.
2004;
10
657-664
111
Cedidi C C, Wilkens L, Berger A, Ingianni G.
Influence of human fibroblasts on development and quality of
multilayered composite grafts in athymic nude mice.
Eur J Med Res.
2007;
12
541-555
112
Nishimura T, Toda S, Mitsumoto T, Oono S, Sugihara H.
Effects of hepatocyte growth factor, transforming growth
factor-beta1 and epidermal growth factor on bovine corneal epithelial cells
under epithelial-keratocyte interaction in reconstruction culture.
Exp Eye Res.
1998;
66
105-116
113
Wilson S E, Chen L, Mohan R R, Liang Q, Liu J.
Expression of HGF, KGF, EGF and receptor messenger RNAs
following corneal epithelial wounding.
Exp Eye Res.
1999;
68
377-397
114
Costea D E, Loro L L, Dimba E A, Vintermyr O K, Johannessen A C.
Crucial effects of fibroblasts and keratinocyte growth factor
on morphogenesis of reconstituted human oral epithelium.
J Invest Dermatol.
2003;
121
1479-1486
115
Daniels J T, Khaw P T.
Temporal stimulation of corneal fibroblast wound healing
activity by differentiating epithelium in vitro.
Invest Opthalmol Vis Sci.
2000;
41
3754-3762
116
Kobayashi K, Nomoto Y, Suzuki T, Tada Y, Miyake M, Hazama A, Kanemaru S, Nakamura T,
Omori K.
Effect of fibroblasts on tracheal epithelial regeneration in
vitro.
Tissue Eng.
2006;
12
2619-2628
117
Kobayashi K, Suzuki T, Nomoto Y, Tada Y, Miyake M, Hazama A, Nakamura T, Omori K.
Potential of heterotopic fibroblasts as autologous
transplanted cells for tracheal epithelial regeneration.
Tissue Eng.
2007;
13
2175-2184
118
Nomoto Y, Kobayashi K, Tada Y, Wada I, Nakamura T, Omori K.
Effect of fibroblasts on epithelial regeneration on the
surface of a bioengineered trachea.
Ann Otol Rhinol Laryngol.
2008;
117
59-64
119
Le Visage C, Dunham B, Flint P, Leong K W.
Coculture of mesenchymal stem cells and respiratory
epithelial cells to engineer a human composite respiratory mucosa.
Tissue Eng.
2004;
10
1426-1435
120
Letang E, Sánchez-Lloret J, Gimferrer J M, Ramírez J, Vicens A.
Experimental reconstruction of the canine trachea with a free
revascularized small bowel graft.
Ann Thorac Surg.
1990;
49
955-958
121
Costantino P D, Nuss D W, Snyderman C H, Johnson J T, Friedman C D, Narayanan K, Houston G.
Experimental tracheal replacement using a revascularized
jejunal autograft with an implantable Dacron mesh tube.
Ann Otol Rhinol Laryngol.
1992;
101
807-814
122
Grillo H C.
The history of tracheal surgery.
Chest Surg Clin N Am.
2003;
13
175-189
123
Fisher R J, Peattie R A.
Controlling tissue microenvironments: biomimetics, transport
phenomena, and reacting systems.
Adv Biochem Eng Biotechnol.
2007;
103
1-73
124
Tan Q, Steiner R, Hoerstrup S P, Weder W.
Tissue-engineered trachea: History, problems and the
future.
Eur J Cardiothorac Surg.
2006;
30
782-786
125
Tan Q, Steiner R, Yang L, Welti M, Neuenschwander P, Hillinger S, Weder W.
Accelerated angiogenesis by continuous medium flow with
vascular endothelial growth factor inside tissue-engineered trachea.
Eur J Cardiothorac Surg.
2007;
31
806-811
126
Hallén L, Dahlqvist A.
Cross-linked hyaluronan for augmentation of the posterior
pharyngeal wall: an experimental study in rats.
Scand J Plast Reconstr Surg Hand Surg.
2002;
36
197-201
127
Ophof R, Maltha J C, Kuijpers-Jagtman A M, Von den Hoff J W.
Implantation of tissue-engineered mucosal substitutes in the
dog palate.
Eur J Orthod.
2008;
30
1-9
128
Moharamzadeh K, Brook I M, Van Noort R, Scutt A M, Thornhill M H.
Tissue-engineered oral mucosa: a review of the scientific
literature.
J Dent Res.
2007;
86
115-124
129
Lendlein A, Langer R.
Biodegradable, Elastic Shape-Memory Polymers for Potential
Biomedical Applications.
Science.
2002;
296
1673-1676
130
Falconnet D, Csucs G, Grandin H M, Textor M.
Surface engineering approaches to micropattern surfaces for
cell-based assays.
Biomaterials.
2006;
27
3044-3063
131
Rickert D, Franke R P, Fernández C A, Kilroy S, Yan L, Moses M A.
Establishment and biochemical characterization of primary
cells of the upper aerodigestive tract.
Clin Hemorheol Microcirc.
2007;
36
47-64
132
Rickert D, Lendlein A, Kelch S, Moses M A, Franke R P.
Expression of MMPs and TIMPs in primary epithelial cell
cultures of the upper aerodigestive tract seeded on the surface of a novel
polymeric biomaterial.
Clin Hemorheol Microcirc.
2005;
32
117-128
133 Clark R AF. The Molecular and Cellular Biology of Wound Repair, 2nd
ed. New York; Plenum Press 1995: 3-50
134
Li J, Chen J, Kirsner R.
Pathophysiology of acute wound healing.
Clin Dermatol.
2007;
25
9-18
135
Ravanti L, Kähäri V M.
Matrix metalloproteinases in wound repair (review).
Int J Mol Med.
2000;
6
391-407
136
Xue M, Le N T, Jackson C J.
Targeting matrix metalloproteases to improve cutaneous wound
healing.
Expert Opin Ther Targets.
2006;
10
143-155
137
Nagase H, Visse R, Murphy G.
Structure and function of matrix metalloproteinases and
TIMPs.
Cardiovasc Res.
2006;
69
562-573
138
Moses M A, Marikovsky M, Harper J W, Vogt P, Eriksson E, Klagsbrun M, Langer R.
Temporal study of the activity of matrix metalloproteinases
and their endogenous inhibitors during wound healing.
J Cell Biochem.
1996;
60
379-386
139
Soo C, Shaw W W, Zhang X, Longaker M T, Howard E W, Ting K.
Differential expression of matrix metalloproteinases and
their tissue-derived inhibitors in cutaneous wound repair.
Plast Reconstr Surg.
2000;
105
638-647
140
Bennett J H, Morgan M J, Whawell S A, Atkin P, Roblin P, Furness J, Speight P M.
Metalloproteinase expression in normal and malignant oral
keratinocytes: stimulation of MMP-2 and -9 by scatter factor.
Eur J Oral Sci.
2000;
108
281-291
141
Stephens P, Davies K J, Occleston N, Pleass R D, Kon C, Daniels J, Khaw P T, Thomas D W.
Skin and oral fibroblasts exhibit phenotypic differences in
extracellular matrix reorganization and matrix metalloproteinase activity.
Br J Dermatol.
2001;
144
229-237
142
Miyazaki Y, Hara A, Kato K, Oyama T, Yamada Y, Mori H, Shibata T.
The effect of hypoxic microenvironment on matrix
metalloproteinase expression in xenografts of human oral squamous cell
carcinoma.
Int J Oncol.
2008;
32
145-151
143
Cyster L A, Parker K G, Parker T L, Grant D M.
The effect of surface chemistry and nanotopography of
titanium nitride (TiN) films on 3T3-L1 fibroblasts.
J Biomed Mater Res A.
2003;
67
138-147
144
Hole B B, Schwarz J A, Gilbert J L, Atkinson B L.
A study of biologically active peptide sequences (P-15) on
the surface of an ABM scaffold (PepGen P-15) using AFM and FTIR.
J Biomed Mater Res A.
2005;
74
712-721
145
Huang Y, Siewe M, Madihally S V.
Effect of spatial architecture on cellular colonization.
Biotechnol Bioeng.
2006;
93
64-75
146
Pfister P M, Wendlandt M, Neuenschwander P, Suter U W.
Surface-textured PEG-based hydrogels with adjustable
elasticity: Synthesis and characterization.
Biomaterials.
2007;
28
567-575
147
Tang Z G, Hunt J A.
The effect of PLGA doping of polycaprolactone films on the
control of osteoblast adhesion and proliferation in vitro.
Biomaterials.
2006;
27
4409-4418
148
Rohman G, Pettit J J, Isaure F, Cameron N R, Southgate J.
Influence of the physical properties of two-dimensional
polyester substrates on the growth of normal human urothelial and urinary
smooth muscle cells in vitro.
Biomaterials.
2007;
28
2264-2274
149
Rompen E, Domken O, Degidi M, Pontes A E, Piattelli A.
The effect of material characteristics, of surface topography
and of implant components and connections on soft tissue integration: a
literature review.
Clin Oral Implants Res.
2006;
17
55-67
150
Tatard V M, Venier-Julienne M C, Saulnier P, Prechter E, Benoit J P, Menei P, Montero-Menei C N.
Pharmacologically active microcarriers: a tool for cell
therapy.
Biomaterials.
2005;
26
3727-3737
151
Tatard V M, Sindji L, Branton J G, Aubert-Pouëssel A, Colleau J, Benoit J P, Montero-Menei C N.
Pharmacologically active microcarriers releasing glial cell
line – derived neurotrophic factor: Survival and differentiation of
embryonic dopaminergic neurons after grafting in hemiparkinsonian rats.
Biomaterials.
2007;
28
1978-1988
152
Davies J E.
Bone bonding at natural and biomaterial surfaces.
Biomaterials.
2007;
28
5058-5067
153
Brown R A, Phillips J B.
Cell responses to biomimetic protein scaffolds used in tissue
repair and engineering. Review.
Int Rev Cytol.
2007;
262
75-150
154
Rickert D, Franke R P, Lendlein A, Kelch S, Moses M A.
Influence of the surface structure of a multiblock copolymer
on the cellular behavior of primary cell cultures of the upper aerodigestive
tract in vitro.
J Biomed Mater Res A.
2007;
83
558-569
155
Chou L, Firth J D, Uitto V J, Brunette D M.
Effects of titanium substratum and grooved surface topography
on metalloproteinase-2 expression in human fibroblasts.
J Biomed Mater Res.
1998;
39
437-445
156
Mudera V C, Pleass R, Eastwood M, Tarnuzzer R, Schultz G, Khaw P, McGrouther D A,
Brown R A.
Molecular responses of human dermal fibroblasts to dual cues:
contact guidance and mechanical load.
Cell Motil Cytoskeleton.
2000;
45
1-9
157
Lind M, Trindade M C, Schurman D J, Goodman S B, Smith R L.
Monocyte migration inhibitory factor synthesis and gene
expression in particle-activated macrophages.
Cytokine.
2000;
12
909-913
158
Rickert D, Scheithauer M O, Coskun S, Lendlein A, Kelch S, Franke R P.
First results of the investigation of the stability and
tissue integration of a degradable, elastomeric copolymer in an animal
model.
Biomed Tech.
2006;
51
116-124
159
Rickert D, Lendlein A, Coskum S, Scheithauer M O.
Polymeric biomaterials in head and neck surgery: first
results of biocompatibility testing of a degradable polymer in an animal
model.
Laryngo-Rhino-Otologie.
2007;
86
507-514
160
Busuttil S J, Drumm C, Plow E F.
In vivo comparison of the inflammatory response induced by
different vascular biomaterials.
Vascular.
2005;
13
230-235
161
Rickert D, Scheithauer M O, Coskun S, Kelch S, Lendlein A, Franke R P.
The influence of a multifunctional, polymeric biomaterial on
the concentration of acute phase proteins in an animal model.
Clin Hemorheol Microcirc.
2007;
36
301-311
162
Folkman J, Haudenschild C, Zetter B R.
Long-term culture of capillary endothelial cells.
Proc Natl Acad Sci.
1979;
76
5217-5221
163
Rickert D, Lendlein A, Kelch S, Franke R P.
The importance of angiogenesis in the interaction between
polymeric biomaterials and surrounding tissue.
Clin Hemorheol Microcirc.
2003;
28
175-181
164
Rickert D, Lendlein A, Peters I, Moses M A, Franke R P.
Biocompatibility testing of novel multifunctional polymeric
biomaterials for tissue engineering applications in head and neck surgery: an
overview.
Eur Arch Otorhinolaryngol.
2006;
263
215-222
165
Kunz-Schughart L A, Schroeder J A, Wondrak M, van Rey F, Lehle K, Hofstaedter F, Wheatley D N.
Potential of fibroblasts to regulate the formation of
three-dimensional vessel-like structures from endothelial cells in vitro.
Am J Physiol Cell Physiol.
2006;
290
1385-1398
166
Au P, Tam J, Fukumura D, Jain R K.
Small blood vessel engineering.
Methods Mol Med.
2007;
140
183-195
167
Lokmic Z, Mitchell G M.
Engineering the microcirculation.
Tissue Eng Part B Rev.
2008;
14
87-103
168
Shapiro R S.
Future issues in transplantation ethics: ethical and legal
controversies in xenotransplantation, stem cell, and cloning research.
Transplant Rev.
2008;
22
210-215
169
Kastenberg Z J, Odorico J S.
Alternative sources of pluripotency: science, ethics, and
stem cells.
Transplant Rev.
2008;
22
215-222
170
Unger C, Skottman H, Blomberg P, Dilber M S, Hovatta O.
Good manufacturing practice and clinical-grade human
embryonic stem cell lines.
Hum Mol Genet.
2008;
17
48-53
171
Burdick J A, Vunjak-Novakovic G.
Review: Engineered Microenvironments for Controlled Stem Cell
Differentiation.
Tissue Eng Part A.
2008;
Epub ahead of print
172
Little L, Healy K E, Schaffer D.
Engineering biomaterials for synthetic neural stem cell
microenvironments.
Chem Rev.
2008;
108
1787-1796
173
Vacanti C A.
History of tissue engineering and a glimpse into its
future.
Tissue Eng.
2006;
12
1137-1142
174
Griffith C K, Miller C, Sainson R C, Calvert J W, Jeon N L, Hughes C C, George S C.
Diffusion limits of an in vitro thick prevascularized
tissue.
Tissue Eng.
2005;
11
257-266
175
Schwab A P, Satin D J.
The realistic costs and benefits of translational
research.
Am J Bioeth.
2008;
8
60-62
176
Becker A J, McCulloch E A, Till J E.
Cytological demonstration of the clonal nature of spleen
colonies derived from transplanted mouse marrow cells.
Nature.
1963;
197
452-454
177
Vacanti C A, Bonassar L J, Vacanti M P, Shufflebarger J.
Replacement of an avulsed phalanx with tissue-engineered
bone.
N Engl J Med.
2001;
344
1511-1514
178
Quarto R, Mastrogiacomo M, Cancedda R, Kutepov S M, Mukhachev V, Lavroukov A, Kon E,
Marcacci M.
Repair of large bone defects with the use of autologous bone
marrow stromal cells.
N Engl J Med.
2001;
344
385-386
179
Hibi H, Yamada Y, Kagami H, Ueda M.
Distraction osteogenesis assisted by tissue engineering in an
irradiated mandible: a case report.
Int J Oral Maxillofac Implants.
2006;
21
141-147
180
Hibi H, Yamada Y, Ueda M, Endo Y.
Alveolar cleft osteoplasty using tissue-engineered osteogenic
material.
Int J Oral Maxillofac Surg.
2006;
35
551-555
181
Granero-Molto F, Weis J A, Longobardi L, Spagnoli A.
Role of mesenchymal stem cells in regenerative medicine:
application to bone and cartilage repair.
Expert Opin Biol Ther.
2008;
8
255-268
182
Ciorba A, Martini A.
Tissue engineering and cartilage regeneration for auricular
reconstruction.
Int J Pediatr Otorhinolaryngol.
2006;
70
1507-1515
183
Hajj R, Baranek T, Le Naour R, Lesimple P, Puchelle E, Coraux C.
Basal cells of the human adult airway surface epithelium
retain transit-amplifying cell properties.
Stem Cells.
2007;
25
139-148
184
Yamzon J L, Kokorowski P, Koh C J.
Stem cells and tissue engineering applications of the
genitourinary tract.
Pediatr Res.
2008;
63
472-477
185
Yang X, Moldovan N I, Zhao Q, Mi S, Zhou Z, Chen D, Gao Z, Tong D, Dou Z.
Reconstruction of damaged cornea by autologous
transplantation of epidermal adult stem cells.
Mol Vis.
2008;
14
1064-1070
186
Bluteau G, Luder H U, De Bari C, Mitsiadis T A.
Stem cells for tooth engineering.
Eur Cell Mater.
2008;
16
1-9
187
Szlávik V, Szabó B, Vicsek T, Barabás J, Bogdán S, Gresz V, Varga G, O'Connell B,
Vág J.
Differentiation of Primary Human Submandibular Gland Cells
Cultured on Basement Membrane Extract.
Tissue Eng Part A.
2008;
14
1915-1926
188
Sato A, Okumura K, Matsumoto S, Hattori K, Hattori S, Shinohara M, Endo F.
Isolation, tissue localization, and cellular characterization
of progenitors derived from adult human salivary glands.
Cloning Stem Cells.
2007;
9
191-205
189
Lombaert I M, Brunsting J F, Wierenga P K, Faber H, Stokman M A, Kok T, Visser W H,
Kampinga H H, de Haan G, Coppes R P.
Rescue of salivary gland function after stem cell
transplantation in irradiated glands.
PloS ONE.
2008;
3
1-13
Priv.-Doz. Dr. med. Dorothee Rickert
Klinik für Hals-Nasen-Ohrenheilkunde, Kopf- und
Hals-Chirurgie, Marienhospital
Böheimstraße 37 70199 Stuttgart
Email: dorotheerickert@vinzenz.de