Semin Plast Surg 2009; 23(2): 100-107
DOI: 10.1055/s-0029-1214162
© Thieme Medical Publishers

Local Antibiotic Therapy in Osteomyelitis

Jaspaul S. Gogia1 , John P. Meehan1 , Paul E. Di Cesare1 , Amir A. Jamali1
  • 1Department of Orthopaedic Surgery, UC Davis Medical Center, Sacramento, California
Weitere Informationen

Publikationsverlauf

Publikationsdatum:
30. April 2009 (online)

ABSTRACT

The local delivery of antibiotics in the treatment of osteomyelitis has been used safely and effectively for decades. Multiple methods of drug delivery have been developed for the purposes of both infection treatment and prophylaxis. The mainstay of treatment in this application over the past 20 years has been non-biodegradable polymethylmethacrylate, which has the advantages of excellent elution characteristics and structural support properties. Biodegradable materials such as calcium sulfate and bone graft substitutes have been used more recently for this purpose. Other biodegradable implants, including synthetic polymers, are not yet approved for use but have demonstrated potential in laboratory investigations. Antibiotic-impregnated metal, a recent development, holds great promise in the treatment and prophylaxis of osteomyelitis in the years to come.

REFERENCES

  • 1 Ciampolini J, Harding K G. Pathophysiology of chronic bacterial osteomyelitis. Why do antibiotics fail so often?.  Postgrad Med J. 2000;  76 479-483
  • 2 Fischer B, Vaudaux P, Magnin M et al.. Novel animal model for studying the molecular mechanisms of bacterial adhesion to bone-implanted metallic devices: role of fibronectin in Staphylococcus aureus adhesion.  J Orthop Res. 1996;  14 914-920
  • 3 Adams K, Couch L, Cierny G, Calhoun J, Mader J T. In vitro and in vivo evaluation of antibiotic diffusion from antibiotic-impregnated polymethylmethacrylate beads.  Clin Orthop Relat Res. 1992;  278 244-252
  • 4 Nelson C L. The current status of material used for depot delivery of drugs.  Clin Orthop Relat Res. 2004;  427 72-78
  • 5 Parsons B, Strauss E. Surgical management of chronic osteomyelitis.  Am J Surg. 2004;  188(Suppl) 57-66
  • 6 Gallie W E. First recurrence of osteomyelitis eighty years after infection.  J Bone Joint Surg Br. 1951;  33 110-111
  • 7 Buchholz H W, Engelbrecht H. Depot effects of various antibiotics mixed with Palacos resins.  Chirurg. 1970;  41 511-515
  • 8 Klemm K. Gentamicin-PMMA-beads in treating bone and soft tissue infections (author's transl).  Zentralbl Chir. 1979;  104 934-942
  • 9 Springer B D, Lee G C, Osmon D et al.. Systemic safety of high-dose antibiotic-loaded cement spacers after resection of an infected total knee arthroplasty.  Clin Orthop Relat Res. 2004;  427 47-51
  • 10 Liu S J, Wen-Ueng S, Lin S S, Chan E C. In vivo release of vancomycin from biodegradable beads.  J Biomed Mater Res. 2002;  63 807-813
  • 11 Mader J T, Calhoun J, Cobos J. In vitro evaluation of antibiotic diffusion from antibiotic-impregnated biodegradable beads and polymethylmethacrylate beads.  Antimicrob Agents Chemother. 1997;  41 415-418
  • 12 Klemm K W. Gentamicin-PMMA chains (Septopal chains) for the local antibiotic treatment of chronic osteomyelitis.  Reconstr Surg Traumatol. 1988;  20 11-35
  • 13 Klemm K. The use of antibiotic-containing bead chains in the treatment of chronic bone infections.  Clin Microbiol Infect. 2001;  7 28-31
  • 14 Penner M J, Masri B A, Duncan C P. Elution characteristics of vancomycin and tobramycin combined in acrylic bone-cement.  J Arthroplasty. 1996;  11 939-944
  • 15 Seeley S K, Seeley J V, Telehowski P et al.. Volume and surface area study of tobramycin-polymethylmethacrylate beads.  Clin Orthop Relat Res. 2004;  420 298-303
  • 16 Baker A S, Greenham L W. Release of gentamicin from acrylic bone cement. Elution and diffusion studies.  J Bone Joint Surg Am. 1988;  70 1551-1557
  • 17 Hoff S F, Fitzgerald Jr R H, Kelly P J. The depot administration of penicillin G and gentamicin in acrylic bone cement.  J Bone Joint Surg Am. 1981;  63 798-804
  • 18 Wahlig H, Dingeldein E, Bergmann R, Reuss K. The release of gentamicin from polymethylmethacrylate beads. An experimental and pharmacokinetic study.  J Bone Joint Surg Br. 1978;  60 270-275
  • 19 Hanssen A D. Local antibiotic delivery vehicles in the treatment of musculoskeletal infection.  Clin Orthop Relat Res. 2005;  437 91-96
  • 20 Neut D, van de Belt H, van Horn J R, van der Mei H C, Busscher H J. Residual gentamicin-release from antibiotic-loaded polymethylmethacrylate beads after 5 years of implantation.  Biomaterials. 2003;  24 1829-1831
  • 21 Bunetel L, Sequi A, Cormier M, Percheron E, Langlais F. Release of gentamicin from acrylic bone cement.  Clin Pharmacokinet. 1989;  17 291-297
  • 22 McLaren A C. Alternative materials to acrylic bone cement for delivery of depot antibiotics in orthopaedic infections.  Clin Orthop Relat Res. 2004;  427 101-106
  • 23 Mendel V, Simanowski H J, Scholz H C, Heymann H. Therapy with gentamicin-PMMA beads, gentamicin-collagen sponge, and cefazolin for experimental osteomyelitis due to Staphylococcus aureus in rats.  Arch Orthop Trauma Surg. 2005;  125 363-368
  • 24 Nelson C L, McLaren S G, Skinner R A et al.. The treatment of experimental osteomyelitis by surgical debridement and the implantation of calcium sulfate tobramycin pellets.  J Orthop Res. 2002;  20 643-647
  • 25 Silverman L D, Lukashova L, Herman O T, Lane J M, Boskey A L. Release of gentamicin from a tricalcium phosphate bone implant.  J Orthop Res. 2007;  25 23-29
  • 26 Bucholz R W, Henry S, Henley M B. Fixation with bioabsorbable screws for the treatment of fractures of the ankle.  J Bone Joint Surg Am. 1994;  76 319-324
  • 27 Bostman O M. Osteoarthritis of the ankle after foreign-body reaction to absorbable pins and screws: a three- to nine-year follow-up study.  J Bone Joint Surg Br. 1998;  80 333-338
  • 28 Huang Z M, He C L, Yang A et al.. Encapsulating drugs in biodegradable ultrafine fibers through co-axial electrospinning.  J Biomed Mater Res A. 2006;  77 169-179
  • 29 Antoci Jr V, Adams C S, Parvizi J et al.. Covalently attached vancomycin provides a nanoscale antibacterial surface.  Clin Orthop Relat Res. 2007;  461 81-87
  • 30 Parvizi J, Wickstrom E, Zeiger A R et al.. Frank Stinchfield Award. Titanium surface with biologic activity against infection.  Clin Orthop Relat Res. 2004;  429 33-38
  • 31 Edin M L, Miclau T, Lester G E, Lindsey R W, Dahners L E. Effect of cefazolin and vancomycin on osteoblasts in vitro.  Clin Orthop Relat Res. 1996;  333 245-251
  • 32 Antoci Jr V, Adams C S, Hickok N J et al.. Antibiotics for local delivery systems cause skeletal cell toxicity in vitro.  Clin Orthop Relat Res. 2007;  462 200-206

Amir A JamaliM.D. 

Department of Orthopaedic Surgery

UC Davis Medical Center, Sacramento, CA 95817

eMail: Amir.Jamali@ucdmc.ucdavis.edu

    >