Semin Liver Dis 2009; 29(2): 222-232
DOI: 10.1055/s-0029-1214377
© Thieme Medical Publishers

Role of Alcohol in Liver Carcinogenesis

Iain H. McKillop1 , Laura W. Schrum2
  • 1Department of General Surgery, Carolinas Medical Center, Charlotte, North Carolina
  • 2Department of Biology, University of North Carolina at Charlotte, Charlotte, North Carolina
Further Information

Publication History

Publication Date:
22 April 2009 (online)

ABSTRACT

Hepatocellular carcinoma (HCC) is one of the most common malignant tumors in the world and contributes significantly to cancer-related morbidity and mortality. Chronic alcohol consumption has long been associated with progressive liver disease toward the development of hepatic cirrhosis and the subsequent increased risk for developing HCC. In assessing the role of alcohol during hepatic disease, and as a carcinogen, many of the deleterious effects of alcohol can be attributed to alcohol metabolism in hepatocytes. In addition to the direct effects of alcohol/alcohol metabolism on hepatocyte transformation, increasing evidence indicates that other intrahepatic and systemic effects of alcohol are likely to play an equally significant role in the process of hepatic tumorigenesis.

REFERENCES

  • 1 McKillop I H, Moran D M, Jin X, Koniaris L G. Molecular pathogenesis of hepatocellular carcinoma.  J Surg Res. 2006;  136(1) 125-135
  • 2 Parkin D M. Global cancer statistics in the year 2000.  Lancet Oncol. 2001;  2(9) 533-543
  • 3 Shibuya K, Mathers C D, Boschi-Pinto C, Lopez A D, Murray C J. Global and regional estimates of cancer mortality and incidence by site: II. Results for the global burden of disease 2000.  BMC Cancer. 2002;  2 37
  • 4 McGlynn K A, London W T. Epidemiology and natural history of hepatocellular carcinoma.  Best Pract Res Clin Gastroenterol. 2005;  19(1) 3-23
  • 5 McGlynn K A, Tsao L, Hsing A W, Devesa S S, Fraumeni Jr J F. International trends and patterns of primary liver cancer.  Int J Cancer. 2001;  94(2) 290-296
  • 6 Marrero J A. Hepatocellular carcinoma.  Curr Opin Gastroenterol. 2005;  21(3) 308-312
  • 7 Okuda K. Hepatocellular carcinoma.  J Hepatol. 2000;  32(suppl) 225-237
  • 8 Pang R W, Joh J W, Johnson P J et al.. Biology of hepatocellular carcinoma.  Ann Surg Oncol. 2008;  15(4) 962-971
  • 9 El-Serag H B, Mason A C. Risk factors for the rising rates of primary liver cancer in the United States.  Arch Intern Med. 2000;  160(21) 3227-3230
  • 10 El-Serag H B, Rudolph K L. Hepatocellular carcinoma: epidemiology and molecular carcinogenesis.  Gastroenterology. 2007;  132(7) 2557-2576
  • 11 Moradpour D, Blum H E. Pathogenesis of hepatocellular carcinoma.  Eur J Gastroenterol Hepatol. 2005;  17(5) 477-483
  • 12 Farazi P A, DePinho R A. The genetic and environmental basis of hepatocellular carcinoma.  Discov Med. 2006;  6(35) 182-186
  • 13 Kew M C. Synergistic interaction between aflatoxin B1 and hepatitis B virus in hepatocarcinogenesis.  Liver Int. 2003;  23(6) 405-409
  • 14 Pang R, Tse E, Poon R T. Molecular pathways in hepatocellular carcinoma.  Cancer Lett. 2006;  240(2) 157-169
  • 15 Poon R T. Optimal initial treatment for early hepatocellular carcinoma in patients with preserved liver function: transplantation or resection?.  Ann Surg Oncol. 2007;  14(2) 541-547
  • 16 Yu M C, Yuan J M. Environmental factors and risk for hepatocellular carcinoma.  Gastroenterology. 2004;  127(suppl 1) S72-S78
  • 17 El-Serag H B, Mason A C. Rising incidence of hepatocellular carcinoma in the United States.  N Engl J Med. 1999;  340(10) 745-750
  • 18 McKillop I H, Schrum L W. Alcohol and liver cancer.  Alcohol. 2005;  35(3) 195-203
  • 19 Taylor-Robinson S D, Foster G R, Arora S, Hargreaves S, Thomas H C. Increase in primary liver cancer in the UK, 1979–94.  Lancet. 1997;  350(9085) 1142-1143
  • 20 Voigt M D. Alcohol in hepatocellular cancer.  Clin Liver Dis. 2005;  9(1) 151-169
  • 21 El-Serag H B, Marrero J A, Rudolph L, Reddy K R. Diagnosis and treatment of hepatocellular carcinoma.  Gastroenterology. 2008;  134(6) 1752-1763
  • 22 Raoul J L. Natural history of hepatocellular carcinoma and current treatment options.  Semin Nucl Med. 2008;  38(2) S13-S18
  • 23 Crocetti L, Lencioni R. Thermal ablation of hepatocellular carcinoma.  Cancer Imaging. 2008;  8 19-26
  • 24 Iannitti D A, Dupuy D E, Mayo-Smith W W, Murphy B. Hepatic radiofrequency ablation.  Arch Surg. 2002;  137(4) 422-426 discussion 427
  • 25 Ishizaki Y, Kawasaki S. The evolution of liver transplantation for hepatocellular carcinoma (past, present, and future).  J Gastroenterol. 2008;  43(1) 18-26
  • 26 Masaki T, Morishita A, Kurokohchi K, Kuriyama S. Multidisciplinary treatment of patients with hepatocellular carcinoma.  Expert Rev Anticancer Ther. 2006;  6(10) 1377-1384
  • 27 Mazzaferro V, Chun Y S, Poon R T et al.. Liver transplantation for hepatocellular carcinoma.  Ann Surg Oncol. 2008;  15(4) 1001-1007
  • 28 Yamazaki S, Takayama T. Surgical treatment of hepatocellular carcinoma: evidence-based outcomes.  World J Gastroenterol. 2008;  14(5) 685-692
  • 29 Abdalla E K, Denys A, Hasegawa K et al.. Treatment of large and advanced hepatocellular carcinoma.  Ann Surg Oncol. 2008;  15(4) 979-985
  • 30 Forner A, Hessheimer A J, Isabel Real M, Bruix J. Treatment of hepatocellular carcinoma.  Crit Rev Oncol Hematol. 2006;  60(2) 89-98
  • 31 Francoz C, Durand F. The risk of surgery in patients with cirrhosis.  Acta Gastroenterol Belg. 2008;  71(1) 42-46 discussion 47
  • 32 Zimmerman M A, Ghobrial R M, Tong M J et al.. Recurrence of hepatocellular carcinoma following liver transplantation: a review of preoperative and postoperative prognostic indicators.  Arch Surg. 2008;  143(2) 182-188 discussion 188
  • 33 Gemma S, Vichi S, Testai E. Individual susceptibility and alcohol effects: biochemical and genetic aspects.  Ann Ist Super Sanita. 2006;  42(1) 8-16
  • 34 Norberg A, Jones A W, Hahn R G, Gabrielsson J L. Role of variability in explaining ethanol pharmacokinetics: research and forensic applications.  Clin Pharmacokinet. 2003;  42(1) 1-31
  • 35 Crabb D W, Liangpunsakul S. Acetaldehyde generating enzyme systems: roles of alcohol dehydrogenase, CYP2E1 and catalase, and speculations on the role of other enzymes and processes.  Novartis Found Symp. 2007;  285 4-16 discussion 16-22
  • 36 Eriksson C J. The role of acetaldehyde in the actions of alcohol (update 2000).  Alcohol Clin Exp Res. 2001;  25(suppl) 15S-32S
  • 37 Seitz H K, Becker P. Alcohol metabolism and cancer risk.  Alcohol Res Health. 2007;  30(1) 38-41
  • 38 Tuma D J, Casey C A. Dangerous byproducts of alcohol breakdown–focus on adducts.  Alcohol Res Health. 2003;  27(4) 285-290
  • 39 Zakhari S. Overview: how is alcohol metabolized by the body?.  Alcohol Res Health. 2006;  29(4) 245-254
  • 40 Bjorkhem I. On the role of alcohol dehydrogenase in omega-oxidation of fatty acids.  Eur J Biochem. 1972;  30(3) 441-451
  • 41 Lieber C S. ALCOHOL: its metabolism and interaction with nutrients.  Annu Rev Nutr. 2000;  20 395-430
  • 42 Deitrich R A, Petersen D, Vasiliou V. Removal of acetaldehyde from the body.  Novartis Found Symp. 2007;  285 23-40 discussion 40-51
  • 43 Jornvall H, Hoog J O. Nomenclature of alcohol dehydrogenases.  Alcohol Alcohol. 1995;  30(2) 153-161
  • 44 Ding J, Li S, Wu J et al.. Alcohol dehydrogenase-2 and aldehyde dehydrogenase-2 genotypes, alcohol drinking and the risk of primary hepatocellular carcinoma in a Chinese population.  Asian Pac J Cancer Prev. 2008;  9(1) 31-35
  • 45 Smith M. Genetics of human alcohol and aldehyde dehydrogenases.  Adv Hum Genet. 1986;  15 249-290
  • 46 Eng M Y, Luczak S E, Wall T L. ALDH2, ADH1B, and ADH1C genotypes in Asians: a literature review.  Alcohol Res Health. 2007;  30(1) 22-27
  • 47 Day C P. Genes or environment to determine alcoholic liver disease and non-alcoholic fatty liver disease.  Liver Int. 2006;  26(9) 1021-1028
  • 48 Edenberg H J. The genetics of alcohol metabolism: role of alcohol dehydrogenase and aldehyde dehydrogenase variants.  Alcohol Res Health. 2007;  30(1) 5-13
  • 49 Monzoni A, Masutti F, Saccoccio G et al.. Genetic determinants of ethanol-induced liver damage.  Mol Med. 2001;  7(4) 255-262
  • 50 Homann N, Stickel F, Konig I R et al.. Alcohol dehydrogenase 1C*1 allele is a genetic marker for alcohol-associated cancer in heavy drinkers.  Int J Cancer. 2006;  118(8) 1998-2002
  • 51 Cederbaum A I. CYP2E1–biochemical and toxicological aspects and role in alcohol-induced liver injury.  Mt Sinai J Med. 2006;  73(4) 657-672
  • 52 Das S K, Vasudevan D M. Alcohol-induced oxidative stress.  Life Sci. 2007;  81(3) 177-187
  • 53 Konishi M, Ishii H. Role of microsomal enzymes in development of alcoholic liver diseases.  J Gastroenterol Hepatol. 2007;  22(suppl 1) S7-S10
  • 54 Lu Y, Cederbaum A I. CYP2E1 and oxidative liver injury by alcohol.  Free Radic Biol Med. 2008;  44(5) 723-738
  • 55 Lieber C S, DeCarli L M. The role of the hepatic microsomal ethanol oxidizing system (MEOS) for ethanol metabolism in vivo.  J Pharmacol Exp Ther. 1972;  181(2) 279-287
  • 56 Lieber C S. Cytochrome P-4502E1: its physiological and pathological role.  Physiol Rev. 1997;  77(2) 517-544
  • 57 Badger T M, Ronis M J, Seitz H K et al.. Alcohol metabolism: role in toxicity and carcinogenesis.  Alcohol Clin Exp Res. 2003;  27(2) 336-347
  • 58 Harada S, Agarwal D P, Nomura F, Higuchi S. Metabolic and ethnic determinants of alcohol drinking habits and vulnerability to alcohol-related disorder.  Alcohol Clin Exp Res. 2001;  25(suppl) 71S-75S
  • 59 Farke W, Anderson P. Binge drinking in Europe.  Adicciones. 2007;  19(4) 333-339
  • 60 Garretsen H F, Rodenburg G, van de Goor L A, van den Eijnden R J. Alcohol consumption in The Netherlands in the last decade: sharp decreases in binge drinking, especially among youngsters.  Alcohol Alcohol. 2008;  43(4) 477-480
  • 61 Koop D R. Oxidative and reductive metabolism by cytochrome P450 2E1.  FASEB J. 1992;  6(2) 724-730
  • 62 Zima T, Kalousova M. Oxidative stress and signal transduction pathways in alcoholic liver disease.  Alcohol Clin Exp Res. 2005;  29(11, Suppl) 110S-115S
  • 63 Baan R, Straif K, Grosse Y et al.. Carcinogenicity of alcoholic beverages.  Lancet Oncol. 2007;  8(4) 292-293
  • 64 Brooks P J, Theruvathu J A. DNA adducts from acetaldehyde: implications for alcohol-related carcinogenesis.  Alcohol. 2005;  35(3) 187-193
  • 65 Lenaz G. The mitochondrial production of reactive oxygen species: mechanisms and implications in human pathology.  IUBMB Life. 2001;  52(3–5) 159-164
  • 66 Tanaka E, Terada M, Misawa S. Cytochrome P450 2E1: its clinical and toxicological role.  J Clin Pharm Ther. 2000;  25(3) 165-175
  • 67 Marrero J A, Fontana R J, Fu S et al.. Alcohol, tobacco and obesity are synergistic risk factors for hepatocellular carcinoma.  J Hepatol. 2005;  42(2) 218-224
  • 68 Vaca C E, Fang J L, Schweda E K. Studies of the reaction of acetaldehyde with deoxynucleosides.  Chem Biol Interact. 1995;  98(1) 51-67
  • 69 Fang J L, Vaca C E. Development of a 32P-postlabelling method for the analysis of adducts arising through the reaction of acetaldehyde with 2'-deoxyguanosine-3′-monophosphate and DNA.  Carcinogenesis. 1995;  16(9) 2177-2185
  • 70 Friedberg E C, Wagner R, Radman M. Specialized DNA polymerases, cellular survival, and the genesis of mutations.  Science. 2002;  296(5573) 1627-1630
  • 71 Wang M, McIntee E J, Cheng G et al.. Identification of DNA adducts of acetaldehyde.  Chem Res Toxicol. 2000;  13(11) 1149-1157
  • 72 de los Santos C, Zaliznyak T, Johnson F. NMR characterization of a DNA duplex containing the major acrolein-derived deoxyguanosine adduct gamma-OH-1,-N2-propano-2'-deoxyguanosine.  J Biol Chem. 2001;  276(12) 9077-9082
  • 73 Kuykendall J R, Bogdanffy M S. Reaction kinetics of DNA-histone crosslinking by vinyl acetate and acetaldehyde.  Carcinogenesis. 1992;  13(11) 2095-2100
  • 74 Mao H, Schnetz-Boutaud N C, Weisenseel J P, Marnett L J, Stone M P. Duplex DNA catalyzes the chemical rearrangement of a malondialdehyde deoxyguanosine adduct.  Proc Natl Acad Sci U S A. 1999;  96(12) 6615-6620
  • 75 Fausto N, Campbell J S, Riehle K J. Liver regeneration.  Hepatology. 2006;  43(suppl 1) S45-S53
  • 76 Koniaris L G, McKillop I H, Schwartz S I, Zimmers T A. Liver regeneration.  J Am Coll Surg. 2003;  197(4) 634-659
  • 77 Michalopoulos G K. Liver regeneration.  J Cell Physiol. 2007;  213(2) 286-300
  • 78 Niemela O. Aldehyde-protein adducts in the liver as a result of ethanol-induced oxidative stress.  Front Biosci. 1999;  4 D506-D513
  • 79 Freeman T L, Tuma D J, Thiele G M et al.. Recent advances in alcohol-induced adduct formation.  Alcohol Clin Exp Res. 2005;  29(7) 1310-1316
  • 80 Tuma D J. Role of malondialdehyde-acetaldehyde adducts in liver injury.  Free Radic Biol Med. 2002;  32(4) 303-308
  • 81 Halsted C H, Villanueva J, Chandler C J et al.. Centrilobular distribution of acetaldehyde and collagen in the ethanol-fed micropig.  Hepatology. 1993;  18(4) 954-960
  • 82 Niemela O, Juvonen T, Parkkila S. Immunohistochemical demonstration of acetaldehyde-modified epitopes in human liver after alcohol consumption.  J Clin Invest. 1991;  87(4) 1367-1374
  • 83 Niemela O, Parkkila S, Yla-Herttuala S et al.. Covalent protein adducts in the liver as a result of ethanol metabolism and lipid peroxidation.  Lab Invest. 1994;  70(4) 537-546
  • 84 Bedossa P, Houglum K, Trautwein C, Holstege A, Chojkier M. Stimulation of collagen alpha 1(I) gene expression is associated with lipid peroxidation in hepatocellular injury: a link to tissue fibrosis?.  Hepatology. 1994;  19(5) 1262-1271
  • 85 Casini A, Cunningham M, Rojkind M, Lieber C S. Acetaldehyde increases procollagen type I and fibronectin gene transcription in cultured rat fat-storing cells through a protein synthesis-dependent mechanism.  Hepatology. 1991;  13(4) 758-765
  • 86 Friedman S L. Seminars in medicine of the Beth Israel Hospital, Boston. The cellular basis of hepatic fibrosis. Mechanisms and treatment strategies.  N Engl J Med. 1993;  328(25) 1828-1835
  • 87 Bai J, Cederbaum A I. Mitochondrial catalase and oxidative injury.  Biol Signals Recept. 2001;  10(3–4) 189-199
  • 88 Sato N. Central role of mitochondria in metabolic regulation of liver pathophysiology.  J Gastroenterol Hepatol. 2007;  22(Suppl 1) S1-S6
  • 89 Abraham P, Wilfred G, Ramakrishna B. Oxidative damage to the hepatocellular proteins after chronic ethanol intake in the rat.  Clin Chim Acta. 2002;  325(1–2) 117-125
  • 90 Amici A, Levine R L, Tsai L, Stadtman E R. Conversion of amino acid residues in proteins and amino acid homopolymers to carbonyl derivatives by metal-catalyzed oxidation reactions.  J Biol Chem. 1989;  264(6) 3341-3346
  • 91 Bondoc F Y, Bao Z, Hu W Y et al.. Acetone catabolism by cytochrome P450 2E1: studies with CYP2E1-null mice.  Biochem Pharmacol. 1999;  58(3) 461-463
  • 92 Koop D R, Casazza J P. Identification of ethanol-inducible P-450 isozyme 3a as the acetone and acetol monooxygenase of rabbit microsomes.  J Biol Chem. 1985;  260(25) 13607-13612
  • 93 Laethem R M, Balazy M, Falck J R, Laethem C L, Koop D R. Formation of 19(S)-, 19(R)-, and 18(R)-hydroxyeicosatetraenoic acids by alcohol-inducible cytochrome P450 2E1.  J Biol Chem. 1993;  268(17) 12912-12918
  • 94 Guengerich F P, Shimada T, Yun C H et al.. Interactions of ingested food, beverage, and tobacco components involving human cytochrome P4501A2, 2A6, 2E1, and 3A4 enzymes.  Environ Health Perspect. 1994;  102(Suppl 9) 49-53
  • 95 Yang C S, Yoo J S, Ishizaki H, Hong J Y. Cytochrome P450IIE1: roles in nitrosamine metabolism and mechanisms of regulation.  Drug Metab Rev. 1990;  22(2–3) 147-159
  • 96 Kushnareva Y, Murphy A N, Andreyev A. Complex I-mediated reactive oxygen species generation: modulation by cytochrome c and NAD(P) + oxidation-reduction state.  Biochem J. 2002;  368(Pt 2) 545-553
  • 97 Garcia-Ruiz C, Fernandez-Checa J C. Mitochondrial glutathione: hepatocellular survival-death switch.  J Gastroenterol Hepatol. 2006;  21(Suppl 3) S3-S6
  • 98 Lash L H. Mitochondrial glutathione transport: physiological, pathological and toxicological implications.  Chem Biol Interact. 2006;  163(1–2) 54-67
  • 99 Fernandez-Checa J C, Kaplowitz N, Garcia-Ruiz C, Colell A. Mitochondrial glutathione: importance and transport.  Semin Liver Dis. 1998;  18(4) 389-401
  • 100 Franco R, Schoneveld O J, Pappa A, Panayiotidis M I. The central role of glutathione in the pathophysiology of human diseases.  Arch Physiol Biochem. 2007;  113(4–5) 234-258
  • 101 Lu S C. S-Adenosylmethionine.  Int J Biochem Cell Biol. 2000;  32(4) 391-395
  • 102 Mato J M, Lu S C. Role of S-adenosyl-L-methionine in liver health and injury.  Hepatology. 2007;  45(5) 1306-1312
  • 103 Lu S C, Mato J M. S-Adenosylmethionine in cell growth, apoptosis and liver cancer.  J Gastroenterol Hepatol. 2008;  23(suppl 1) S73-S77
  • 104 Pascale R M, Simile M M, Seddaiu M A et al.. Chemoprevention of rat liver carcinogenesis by S-adenosyl-L-methionine: is DNA methylation involved?.  Basic Life Sci. 1993;  61 219-237
  • 105 Garcia-Ruiz C, Morales A, Colell A et al.. Feeding S-adenosyl-L-methionine attenuates both ethanol-induced depletion of mitochondrial glutathione and mitochondrial dysfunction in periportal and perivenous rat hepatocytes.  Hepatology. 1995;  21(1) 207-214
  • 106 Lu S C, Mato J M. Role of methionine adenosyltransferase and S-adenosylmethionine in alcohol-associated liver cancer.  Alcohol. 2005;  35(3) 227-234
  • 107 Mato J M, Camara J, Fernandez de Paz J et al.. S-adenosylmethionine in alcoholic liver cirrhosis: a randomized, placebo-controlled, double-blind, multicenter clinical trial.  J Hepatol. 1999;  30(6) 1081-1089
  • 108 Santini D, Vincenzi B, Massacesi C et al.. S-adenosylmethionine (AdoMet) supplementation for treatment of chemotherapy-induced liver injury.  Anticancer Res. 2003;  23(6D) 5173-5179
  • 109 Rambaldi A, Gluud C. S-adenosyl-L-methionine for alcoholic liver diseases.  Cochrane Database Syst Rev. 2006;  (2) CD002235
  • 110 Nagata K, Suzuki H, Sakaguchi S. Common pathogenic mechanism in development progression of liver injury caused by non-alcoholic or alcoholic steatohepatitis.  J Toxicol Sci. 2007;  32(5) 453-468
  • 111 Thurman R G. II. Alcoholic liver injury involves activation of Kupffer cells by endotoxin.  Am J Physiol. 1998;  275(4 Pt 1) G605-G611
  • 112 Bode C, Bode J C. Activation of the innate immune system and alcoholic liver disease: effects of ethanol per se or enhanced intestinal translocation of bacterial toxins induced by ethanol?.  Alcohol Clin Exp Res. 2005;  29(suppl) 166S-171S
  • 113 Hoek J B, Pastorino J G. Ethanol, oxidative stress, and cytokine-induced liver cell injury.  Alcohol. 2002;  27(1) 63-68
  • 114 Hoek J B, Pastorino J G. Cellular signaling mechanisms in alcohol-induced liver damage.  Semin Liver Dis. 2004;  24(3) 257-272
  • 115 Roberts R A, Ganey P E, Ju C et al.. Role of the Kupffer cell in mediating hepatic toxicity and carcinogenesis.  Toxicol Sci. 2007;  96(1) 2-15
  • 116 Thakur V, McMullen M R, Pritchard M T, Nagy L E. Regulation of macrophage activation in alcoholic liver disease.  J Gastroenterol Hepatol. 2007;  22(suppl 1) S53-S56
  • 117 Ruttinger D, Vollmar B, Wanner G A, Messmer K. In vivo assessment of hepatic alterations following gadolinium chloride-induced Kupffer cell blockade.  J Hepatol. 1996;  25(6) 960-967
  • 118 Vollmar B, Ruttinger D, Wanner G A, Leiderer R, Menger M D. Modulation of Kupffer cell activity by gadolinium chloride in endotoxemic rats.  Shock. 1996;  6(6) 434-441
  • 119 Friedman S L. Hepatic stellate cells: protean, multifunctional, and enigmatic cells of the liver.  Physiol Rev. 2008;  88(1) 125-172
  • 120 Senoo H, Kojima N, Sato M. Vitamin A-storing cells (stellate cells).  Vitam Horm. 2007;  75 131-159
  • 121 Sato M, Suzuki S, Senoo H. Hepatic stellate cells: unique characteristics in cell biology and phenotype.  Cell Struct Funct. 2003;  28(2) 105-112
  • 122 Parsons C J, Takashima M, Rippe R A. Molecular mechanisms of hepatic fibrogenesis.  J Gastroenterol Hepatol. 2007;  22(suppl 1) S79-S84
  • 123 Albano E. Oxidative mechanisms in the pathogenesis of alcoholic liver disease.  Mol Aspects Med. 2008;  29(1–2) 9-16
  • 124 Lirussi F, Azzalini L, Orando S, Orlando R, Angelico F. Antioxidant supplements for non-alcoholic fatty liver disease and/or steatohepatitis.  Cochrane Database Syst Rev. 2007;  (1) CD004996
  • 125 Karaa A, Thompson K J, McKillop I H, Clemens M G, Schrum L W. S-adenosyl-L-methionine attenuates oxidative stress and hepatic stellate cell activation in an ethanol-lps-induced fibrotic rat model.  Shock. 2008;  30(2) 197-205
  • 126 Yang X, Lu P, Ishida Y et al.. Attenuated liver tumor formation in the absence of CCR2 with a concomitant reduction in the accumulation of hepatic stellate cells, macrophages and neovascularization.  Int J Cancer. 2006;  118(2) 335-345
  • 127 Johnson S J, Burr A W, Toole K et al.. Macrophage and hepatic stellate cell responses during experimental hepatocarcinogenesis.  J Gastroenterol Hepatol. 1998;  13(2) 145-151
  • 128 Reuben A. Alcohol and the liver.  Curr Opin Gastroenterol. 2006;  22(3) 263-271
  • 129 Colombo M, Sangiovanni A. Etiology, natural history and treatment of hepatocellular carcinoma.  Antiviral Res. 2003;  60(2) 145-150
  • 130 Macdonald G A. Pathogenesis of hepatocellular carcinoma.  Clin Liver Dis. 2001;  5(1) 69-85
  • 131 Okuda K. Hepatocellular carcinoma–history, current status and perspectives.  Dig Liver Dis. 2002;  34(9) 613-616
  • 132 Ribatti D, Vacca A, Nico B, Sansonno D, Dammacco F. Angiogenesis and anti-angiogenesis in hepatocellular carcinoma.  Cancer Treat Rev. 2006;  32(6) 437-444
  • 133 Pang R, Poon R T. Angiogenesis and antiangiogenic therapy in hepatocellular carcinoma.  Cancer Lett. 2006;  242(2) 151-167
  • 134 Sugimachi K, Tanaka S, Taguchi K et al.. Angiopoietin switching regulates angiogenesis and progression of human hepatocellular carcinoma.  J Clin Pathol. 2003;  56(11) 854-860
  • 135 Bauer I, Bauer M, Pannen B H et al.. Chronic ethanol consumption exacerbates liver injury following hemorrhagic shock: role of sinusoidal perfusion failure.  Shock. 1995;  4(5) 324-331
  • 136 Bauer M, Paquette N C, Zhang J X et al.. Chronic ethanol consumption increases hepatic sinusoidal contractile response to endothelin-1 in the rat.  Hepatology. 1995;  22(5) 1565-1576
  • 137 Karaa A, Kamoun W S, Clemens M G. Chronic ethanol sensitizes the liver to endotoxin via effects on endothelial nitric oxide synthase regulation.  Shock. 2005;  24(5) 447-454
  • 138 Aroor A R, Shukla S D. MAP kinase signaling in diverse effects of ethanol.  Life Sci. 2004;  74(19) 2339-2364
  • 139 Hoek J B, Rubin E. Alcohol and membrane-associated signal transduction.  Alcohol Alcohol. 1990;  25(2–3) 143-156
  • 140 Hoek J B, Thomas A P, Rooney T A, Higashi K, Rubin E. Ethanol and signal transduction in the liver.  FASEB J. 1992;  6(7) 2386-2396
  • 141 Ronis M J, Wands J R, Badger T M et al.. Alcohol-induced disruption of endocrine signaling.  Alcohol Clin Exp Res. 2007;  31(8) 1269-1285
  • 142 Diehl A M, Yang S Q, Wolfgang D, Wand G. Differential expression of guanine nucleotide-binding proteins enhances cAMP synthesis in regenerating rat liver.  J Clin Invest. 1992;  89(6) 1706-1712
  • 143 Diehl A M, Yang S Q, Cote P, Wand G S. Chronic ethanol consumption disturbs G-protein expression and inhibits cyclic AMP-dependent signaling in regenerating rat liver.  Hepatology. 1992;  16(5) 1212-1219
  • 144 McKillop I H, Wu Y, Cahill P A, Sitzmann J V. Altered expression of inhibitory guanine nucleotide regulatory proteins (Gi-proteins) in experimental hepatocellular carcinoma.  J Cell Physiol. 1998;  175(3) 295-304
  • 145 Schmidt C M, McKillop I H, Cahill P A, Sitzmann J V. Alterations in guanine nucleotide regulatory protein expression and activity in human hepatocellular carcinoma.  Hepatology. 1997;  26(5) 1189-1194
  • 146 McKillop I H, Vyas N, Schmidt C M, Cahill P A, Sitzmann J V. Enhanced Gi-protein-mediated mitogenesis following chronic ethanol exposure in a rat model of experimental hepatocellular carcinoma.  Hepatology. 1999;  29(2) 412-420

Iain H McKillopPh.D. 

Department of General Surgery, Carolinas Medical Center

1000 Blythe Boulevard, Charlotte, NC 28203

Email: iain.mckillop@carolinashealthcare.org

    >